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Plan.

First part.

e Log-concave measures : a basic concept in probability
and geometry.

e Some questions still of interest :

1) Approximation of the covariance matrix

2) The spectral gap inequality : conjecture of Kannan,
Lovasz and Simonovits

3) The variance conjecture (a particular case of the
previous one) and concentration of mass

4) The hyperplane conjecture

Second part.
e Another general case : s-concave measures for s < 0.
e New results about the concentration of mass.
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Prékopa-Leindler...

Classical examples :
1) Probabilistic : f(x) = exp(—|x[3), f(x) = exp(—|x|)
2) Geometric : f(x) = 1x(x) where K is a convex body.
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Convex geometry - Log-concave measures.

The hyperplane conjecture : does there exist a constant
C > 0 such that

for every n and every convex body K C R”" of volume 1
and barycenter at the origin, there is a direction ¢ such
that Vol (K N 6') > C?

let K, and K, be two convex bodies with barycenter at the
origin such that for every 0 € 5!

Vol (K; N 6+) < Vol (K, N 6+)

then Vol (K]) < C Vol (Kz) ?
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The hyperplane conjecture : equivalent formulation

1
2 : 2
[ m - Ly <C?
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Attained when K is in isotropic position :
K has barycenter at the origin and the inertia matrix is the

identity 1 |
/)Cl‘Xj dx = 6,‘1/. LK = 1
Vol K Jk (VolK)»

Letf : R" — R* be a log-concave isotropic function,
/f(x)dx =1, /xf(x)dx =0, /x,-xjf(x)dx = 0;;.

sup f(0)/" < C?

[ isotropic

Theorem (Ball). These two questions are equivalent.
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K C R" is given by a separation oracle

Elekes ('86), Barany-Flredi ('86) : it is not possible to
compute with a deterministic algorithm in polynomial time
the volume of a convex body (even approximately)

Randomization - Given ¢ and n, Dyer-Frieze-Kannan(’89)
established randomized algorithms returning a
non-negative number ¢ such that

(1 —e)¢ < VolK < (1+¢)¢

with probability at least 1 — n. The running time of the
algorithm is polynomial in n, 1/ and log(1/n).

The number of oracle calls is a random variable and the
bound is for example on its expected value.
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Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovasz
and Simonovits improves significantly the polynomial
dependence.

Rounding - Put the convex body in a position where

where d < n“™', B,ckcdb

- Idea : find an algorithm which produces in polynomial
time a matrix A such that AK is in an approximate
isotropic position.

Conjecture 2 of KLS ('97) : solved in 2010 by Adamczak,
Litvak, Pajor, Tomczak-Jaegermann

Computing the volume - Monte Carlo algorithm, estimates
of local conductance.

Conjecture 1 of KLS ('95) : isoperimetric inequality -
open!



Approximation of the covariance matrix.
Question of KLS ('97) : let X be a vector uniformly
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| - || is the operator norm
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Approximation of the covariance matrix.

Question of KLS ('97) : let X be a vector uniformly
distributed on a convex body K, X, ..., Xy ind. copies of
X, what is the smallest N such that

N

1

N2 XX —1d
=1

Assume EX X' =1d, you want to control the smallest
and the largest singular values.

N N
1 . 1 .
l_gé)\mm<ﬁg )(j)fj>§/\max<]v§ X/Xj)§1+5
j=1 j=1

KLS »? /<%, Bourgain nlog” n/s?, ... Rudelson, Guédon,
Paouris, Aubrun, Giannopoulos
ALPT ('10) n/<? : for general log-concave vectors

<e
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Isoperimetric problem.

Define

S+ eBy) — u(S
1 (S) zlimiglfu( +eB) — ulS)
e—

3

Question. Find the largest / such that
VSCK, pt(S) > hu(S)(1—uS) °
1 is log-concave with log concave density f.
The probability du.(x) = f(x)dx is log-concave isotropic.

Poincaré type inequality. For every regular function F,

h* Var ,F < /|VF(x)|§f(x)dx.

The conjecture is that 7 is a universal constant.
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Payne-Weinberger ['50] e
Kannan, Lovasz, Simonovits ['95], Bobkov [07] :
C C
h> ——»—— h > ———
~ Ji b= gkladx — (Var |X]3)'/4

This conjecture implies :
Strong concentration of the Euclidean norm

P (||X]> — v/n| > t/n) < C exp(—ct+/n)

Large and medium scales !



Thin shell and central limit theorem

CLT : classical case. xi, ..., x,, ni.i.d random variables,
Ex! = 1,Ex; = 0,Ex; = 7
then V4 € §"~!

“ ! du
P Gixi <t|]| — / €_u2/2—
(Boe=) - [

< rloff = —-.

Vn

sup
teR




Thin shell and central limit theorem
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isotropic convex body, find a direction # € S"~! such that
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Thin shell and central limit theorem

Question. [Ball '97], [Brehm-Voigt '98] Let K be an
isotropic convex body, find a direction # € S"~! such that
sup

. ! du
P (9,'X,‘ S t) — / e‘”z/z—
teR (; ) —00 V 27T

with lim,o a,, = 0?

Conjecture. [Anttila-Ball-Perissinaki ‘03]

Thin shell conjecture : Vn, 3¢, such that for every random
vector uniformly distributed in an isotropic convex body

P &—1 >e, | <e
\/]71 _ ~n — ~n

with lim . £, = 0. Or more vaguely, does Var |X|,/n goes
tozeroasn — oo ?
Theorem[ABP]. Thin shell = CLT

< q
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Concentration of the volume in a Euclidean
ball - Large and small scale.

The log-concave case
In isotropic position, E|X|3 = n and by classical
log-concavity property (cf Borell)

Vi>1, P{|X|, >cty/n} <2e .
[Alesker '98]

Vi>1, P{X|,>ctyn}<2e ",
[Paouris ’06] For a log-concave isotropic probability

Vi>1, P{X|,>cty/n} <2e V"

[Paouris '09] For a log-concave isotropic probability
Ve <1, P{X|, <cevn} <2V
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Concentration of the volume in a Euclidean
ball - Medium scale.

Theorem. Klartag['07] [Fleury-Guédon-Paouris '07]
Let X be a log-concave isotropic vector

Vi >0, P(||X], — V| > 1y/n) <2ecVitlen,

Klartag['07] [Fleury 09]. Polynomial estimates.
Theorem [Guédon-Milman '11]
Vi >0, P(|[X>—n|>1tv/n) < Cexp(—cy/n min(£,1))

Var[X|3 < Cn’® and h>cn/"?

Variance conjecture : Var |X|, < C or Var [X|5 < Cn



Pictures - Intuition in high dimension.

convex body in "isotropic position”.
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Pictures - Intuition in high dimension.

volume inside a ball of radius 100+/n



Pictures - Intuition in high dimension.

volume inside a shell of width /n/n!/®
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By Borell's inequality (Khintchine type inequality)
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Hence Vp>1, (EXP)'”" <Cyn+cp
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Vi>1, P(|X|x>1vn) <e V"
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&

Behavior of (E|X[2)'/” for some values of p.

¢ X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

V=1, (EIX|})"" < CEX|+cop(X) ()
where 0, (X) = sup,.,, (E{z, X)?)"/".
e Small Ball Estimates of Paouris - Negative moments.

e Variance conjecture - slightly more, cf KLS. In isotropic
position,

Wp e 2 evil, (BIXE) < Vire Lo = (BX13)2(14+2).
Vn n
e In view of (x), more tractable conjecture :
Vp 21, (EXE)' <EIX| +co,(X)
e Eldan-Klartag ['11], Eldan ['12].



Other probabilistic questions.

For which random vector do we have that for any norm,
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Examples : Gaussian and Rademacher vectors, for all
p > 1. Other example of the form X = > &v; with &;
independant, symmetric random variables with

logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latata).

It is conjecture that it is true for log-concave random
vectors (Latata).



Other probabilistic questions.

For which random vector do we have that for any norm,

(EIX]")"" < CE|X]| + ¢ sup (E(z,X)")'".

llzll«<1

Examples : Gaussian and Rademacher vectors, for all
p > 1. Other example of the form X = > &v; with &;
independant, symmetric random variables with

logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latata).

It is conjecture that it is true for log-concave random
vectors (Latata).

Paouris Theorem tells that it is true for log-concave and
the Euclidean norm !
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New class of random vectors

The hypothesis H(p. \) :

Letp >0, m = [p],and A\ > 1. A random vector X in E
satisfies the assumption H(p, \) if for every linear
mapping A : E — R” s. t. Y = AX is non-degenerate there
exists a gauge || - || on R" s. t. E||Y|| < oo and

(E|Y|P)'? < AE|Y].

e Any m-dimensional norm can be approx. by ¢” numbers
of linear forms
(B[|Y|]")/7 < C sup (Elp(¥)]")""
llell«<1
— Rademacher, Gaussian, v, vectors satisfy H(p, C1/?)

for every p < n. Wlog, assume isotropicity of the vector AX

(E|Y[5)'? < Cy\/p sup E|(p, Y)| < Cyp/m < Cp*V2E|Y,

le[2<1
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The hypothesis H(p. \) :
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Results. (AGLLOPT*’12)

The hypothesis H(p. \) :

Letp >0, m = [p],and A\ > 1. A random vector X in E
satisfies the assumption H(p, \) if for every linear
mapping A : E — R s. t. Y = AX is non-degenerate there
exists a gauge || - || on R" s. t. E||Y|| < oo and

EY|)'? < XE|)Y].
Theorem 1 Letp > 0 and A > 1. If a random vector X
satisfies H(p, \) then
(EX[5)'? < ¢ (AEIX]> + 0,(X))
where c is a universal constant.

* Adamczak, G, Latata, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann
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Proof : X random vectorin E,m = [p], A\ > 1,A: E - R"
Gaussian Concentration. G standard Gaussian vector

(EGEx(G.X)")"”" < E¢(Ex(G.X)")? + ¢ \/p 0,(X)

Izl = (Bx(z, X))
is the dual norm of Z, bodies, at the heart of all proofs.



Proof : X random vectorin E,m = [p], A\ > 1,A: E - R"
Gaussian Concentration. G standard Gaussian vector
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(EGEx(G. X)")'"" < E6(Ex(G,X)")'"? + ¢ \/p 0,(X)

Gordon min-max theorem. A standard Gaussian matrix

Ec(Ex(G,X)?")'/? < B4 min (Ex(z, AX)")'? + ¢ \/p 0,(X)

|z]2=1

Geometric lemma. X symmetric vector satisfying H(p, \)

min (Ex<Z,AX>p)l/p S A ]Ex‘AX|2
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1 1 :
(Efx[5)"/7 ~ E(EGEMG,XV’)I/P S WEA min (Ex (z,AX)")"/"+ o, (X)
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Proof : X random vectorin E,m = [p], A\ > 1,A: E - R"
Gaussian Concentration. G standard Gaussian vector

(EGEx(G.X)")'" < Eg(Ex(G, X)")'" + ¢ \/p 0,(X)

Gordon min-max theorem. A standard Gaussian matrix

Ec(Ex(G,X)?)'? < B, min (Ex(z, AX)")'? + ¢ \/p 0,(X)

lz]2=1
Geometric lemma. X symmetric vector satisfying H(p, \)

min (Ex (z, AX)?)'/P < X Ex|AX|,

|z],=1
1 1
(EIX)!7 ~ —=(Box(G, X)) < =By min (Bx(AX)")'7 + o3(x
7|2=1

—EA A Ex|AX]2 + 0p(X) S AEX|2 + 0, (X)

S*%



s-concave random vectors, s < 0

Convex measures : definition
Let s < 1/n. A probability Borel measure p on R” is called
s-concave if VA, B C R",V# € [0, 1],

p((1—60)A+0B) > ((1 —0)u(A)* +(9,u(B)S)1/S

whenever u(A)u(B) > 0.
For s = 0, this corresponds to log-concave measures.

The class of s-concave measures was introduced and
studied by Borell in the 70’s. A s-concave probability

(s < 0) is supported on some convex subset of an affine
subspace where it has a density.



s-concave random vectors, s < 0

Convex measures : properties

Lets=—1/r.

When the support generates the whole space, a convex
measure has a density g which has the form

g=f" with B=n+r

and f is a positive convex function on R”". (Borell).
Example :
g(x) = ¢(1 + [lf) ", r > 0.

e A log-concave prob is (—1/r)-concave for any r > 0

e The linear image of a (—1/r)-concave vector is also
(—1/r)-concave.

e The Euclidean norm of a (—1/r)-concave random vector
has moments of order 0 < p < r.



Convex measures and H(p, \)

Theorem 2. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p, C), C being a universal constant.



Convex measures and H(p, \)

Theorem 2. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p, C), C being a universal constant.

Recall H(p, \) : for every linear mapping A : E — R" s. 1.
Y = AX is non-degenerate there exists a gauge || - || on R”
s. . E||Y|| < o0 and

(E|Y|P)'” < AE|Y].

For Y = AX symmetric, the norm is defined by a level set
of the density of gy. Its unit ball is

K, ={teR":g/t) <a"[lgrll«}



Convex measures and H(p, \)

Theorem 2. Letr > 2 and X be a (—1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p, C), C being a universal constant.

Theorem 3. Letr > 2 and X be a (—1/r)-concave random
vector. Then forevery 0 <p < r/2,

(EIX5)"" < C(E[X]2 + 0,(X)).



Convex measures. Concentration of |X|,

Corollary. Letr > 2 and X be a (—1/r)-concave random
vector. Then for everyt > 0,

P(|X|, > tv/n) < <Cmax(17r/\/ﬁ)>,/2

t
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vector. Then for everyt > 0,
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t

Srivastava and Vershynin ['12] — Approximation of the
covariance matrix of convex measures.



Convex measures. Concentration of |X|,

Corollary. Letr > 2 and X be a (—1/r)-concave random
vector. Then for everyt > 0,

P(|X|, > tv/n) < <Cmax(1’r/\/ﬁ)>,/2

t

Srivastava and Vershynin ['12] — Approximation of the
covariance matrix of convex measures.

Corollary. Letr >logn and X be a (—1/r)-concave
isotropic random vector. Let X,, ..., Xy be independent
copies of X. Then for every ¢ € (0,1) and every

N > C(e)n, one has

E <e.

1 N
— N XX, — 1
v
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