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Overview

Survey of a recently developed line of research, studying
probabilistic approximations (e.g. Central Limit Theorems
or Laws of Small Numbers) using the Malliavin calculus
of variations and the Stein and Chen-Stein methods.
Keyword: integration by parts.

Basic message: one can compute Berry-Esseen bounds
by means of variance estimates, loosely analogous to
second order Poincaré inequalities. They often rely on
moment estimates for chaotic random variables.
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Overview

In a Gaussian framework: applications in a number of
fields: fractional processes, Gaussian polymers, random
fields on homogeneous spaces, random matrices, U-stats.
See the monograph: Nourdin-P. 2012.

In a Poisson framework: impetus comes since two years
from stochastic geometry. Applications to: geometric
random graphs, k -flat processes, Poisson-Voronoi, ...
(Lachièze-Rey, Last, Penrose, P., Reitzner, Schulte,
Thaele).
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The basic problem

Fix n ≥ 1, and let X = (X1, ..., Xn) ∼ Nn(0, In). Let f : Rn → R
be smooth, and N ∼ N (0, 1).

Define F = f (X1, ..., Xn) and
assume F is centered and has unit variance.

Problem: How distant are the laws of F and N?

We shall first tackle this problem by implementing a smart path
method (used e.g. for proving the Sudakov-Fernique
inequality), as well as by using the Ornstein-Uhlenbeck
semigroup {Pt}t≥0:

Pt f (y) = E [f (e−t
y +

�
1 − e−2tX )] (Mehler form).

Also: L and L−1 denote the generator of Pt and its
pseudo-inverse.
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Approach by smart paths

Assume F and N are independent. Take ϕ : R → R ∈ C2
b

and
define the function

Ψ(t) = E [ϕ(
√

tF +
√

1 − tN)],

in such a way that E [ϕ(F )] − E [ϕ(N)] =
� 1

0 Ψ�(t)dt , and

Ψ�(t) =
1
2

�
E

�
F√

t
ϕ�(

√
tF +

√
1 − tN)

�

−E

�
N√
1 − t

ϕ�(
√

tF +
√

1 − tN)
��

:=
1
2
(At − Bt).
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Approach by smart paths

Of course: Bt = E

�
ϕ��(

√
tF +

√
1 − tN)

�
.

Using F = P0f (X ) − P∞f (X ) = −
� ∞

0 (d/dt)Pt f (X )dt =
−

� ∞
0 LPt f (X )dt , it is now a matter of simple verification that

At = E

�
F√

t
ϕ�(

√
tF +

√
1 − tN)

�

= E

�
ϕ��(

√
tF +

√
1 − tN) × �∇f (X ), −∇L

−1
f (X )�Rn

�
,

where −∇L−1f (y) =
� ∞

0 e−tPt∇f (y)dt , yielding that
���E [ϕ(F )] − E [ϕ(N)]

��� ≤ sup
t

|Ψ�(t)|

≤ �ϕ���∞
2

E |1 − G| ≤ �ϕ���∞
2

�
Var(G).

where G = �∇f (X ), −∇L−1f (X )�Rn .
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Five questions

Why is the variance of G relevant to normal
approximations?
Can one consider non-smooth test functions?
How well does this procedure extend to an
infinite-dimensional setting?
Can we connect these results to Poincaré-type
inequalities?
Are r.v.’s of the form of G uniquely related to normal
approximations?
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Stein’s method in a nutshell (Stein 1972, 1986)

Lemma (Stein’s Lemma)
A random variable F has a N (0, 1) distribution if and only if for

every smooth function g

E
�
g

� (F ) − Fg (F )
�
= 0.

Heuristically, Stein’s Lemma suggests that, if F is such that

E
�
g

� (F ) − Fg (F )
�

� 0

for a “sufficiently large” class of smooth functions g, then the
law of F must be close to Gaussian.
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Stein’s method in a nutshell (Stein 1972, 1986)

Formally: fix h = 1C , take N ∼ N (0, 1), and introduce the
Stein equation

g� (y) − yg (y) = h (y) − E [h (N)] , y ∈ R (�)

(the unknown being g).

Classic estimates by Stein (1986) yield that there exists a
solution to (�), say gh, such that

|gh| ≤
�

π/2 and |g�
h
| ≤ 2 .
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Stein’s method in nutshell (Stein 1972, 1986)

The previous results show that, if N ∼ N (0, 1), then

dTV (F , N) ≤ sup
|g�|≤2

|g|≤
√

π/2

��E
�
g

� (F ) − Fg (F )
��� ,

which is known as the Stein’s bound on the total variation
distance.
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Isonormal processes, chaos and Malliavin

Let H be a real separable Hilbert space. An isonormal
Gaussian process X = {X (h) : h ∈ H} is a centered
Gaussian family verifying E [X (h)X (h�)] = �h, h��H. In the
finite dimensional case H = Rn.

For every q ≥ 1 and every f ∈ H⊙q, Iq(f ) is the multiple
Wiener-Itô integral of f with respect to X . Multiple integrals
of order q compose the qth Wiener chaos of X , noted Cq.
In the finite-dimensional case, Cq is just the closed linear
space generated by r.v.’s of the type

H(X1, ..., Xn),

where X is a n-valued Hermite polynomial of exact
degree q.
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Isonormal processes, chaos and Malliavin

Recall the chaotic decomposition: L2(σ(X )) =
�

q≥1 Cq.

We use some standard operators of Malliavin calculus: D

(= derivative); D2 (= second derivative); δ (=
divergence, adjoint of D), Pt (= OU semigroup), L (= its
generator), L−1,... In the finite-dimensional case,
Df (x) = ∇f (X ), D2 = Hessf (X ). Pt is again defined via a
Mehler-type formula.
Recall that Cq are eigenspaces of Pt , L and L−1 (with
eigenvalues e−qt , −q, −q−1, respectively).
Chain rule: if ϕ : R → R is smooth, Dϕ(F ) = ϕ�(F )DF .
Important relation: −δD = L.
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Central formula

Let F ∈ domD be centered and with unit variance. Assume F

has a density and g is Lipschitz.

Then,

E [Fg(F )] = E [LL
−1

Fg(F )] = E [−δ(DL
−1

F )g(F )]

= E [�Dg(F ), −DL
−1

F �H] = E [g�(F )�DF , −DL
−1

F �H].

Note: if F ∈ Cq, then �DF , −DL−1F �H = 1
q
�DF�2

H.

Giovanni Peccati Approximations and Variance



Central formula

Let F ∈ domD be centered and with unit variance. Assume F

has a density and g is Lipschitz. Then,

E [Fg(F )] = E [LL
−1

Fg(F )] = E [−δ(DL
−1

F )g(F )]

= E [�Dg(F ), −DL
−1

F �H] = E [g�(F )�DF , −DL
−1

F �H].

Note: if F ∈ Cq, then �DF , −DL−1F �H = 1
q
�DF�2

H.

Giovanni Peccati Approximations and Variance



Central formula

Let F ∈ domD be centered and with unit variance. Assume F

has a density and g is Lipschitz. Then,

E [Fg(F )] = E [LL
−1

Fg(F )] = E [−δ(DL
−1

F )g(F )]

= E [�Dg(F ), −DL
−1

F �H]

= E [g�(F )�DF , −DL
−1

F �H].

Note: if F ∈ Cq, then �DF , −DL−1F �H = 1
q
�DF�2

H.

Giovanni Peccati Approximations and Variance



Central formula

Let F ∈ domD be centered and with unit variance. Assume F

has a density and g is Lipschitz. Then,

E [Fg(F )] = E [LL
−1

Fg(F )] = E [−δ(DL
−1

F )g(F )]

= E [�Dg(F ), −DL
−1

F �H] = E [g�(F )�DF , −DL
−1

F �H].

Note: if F ∈ Cq, then �DF , −DL−1F �H = 1
q
�DF�2

H.

Giovanni Peccati Approximations and Variance



Central formula

Let F ∈ domD be centered and with unit variance. Assume F

has a density and g is Lipschitz. Then,

E [Fg(F )] = E [LL
−1

Fg(F )] = E [−δ(DL
−1

F )g(F )]

= E [�Dg(F ), −DL
−1

F �H] = E [g�(F )�DF , −DL
−1

F �H].

Note: if F ∈ Cq, then �DF , −DL−1F �H = 1
q
�DF�2

H.

Giovanni Peccati Approximations and Variance



Main bound

Theorem (Nourdin-Peccati, 2009)
Let F ∈ domD be centered and with unit variance, and

N ∼ N (0, 1).

dTV (F , N) ≤ sup
|g�|≤2

��E
�
g

� (F ) − Fg (F )
���

= sup
|g�|≤2

���E
�
g

� (F ) (1 − �DF , −DL
−1

F �H)
����

≤ 2E |1 − �DF , −DL
−1

F �H| ≤ 2Var(�DF , −DL
−1

F �H)1/2.
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Focus on Wiener chaos

The most important application of the method is the following.
As before, N ∼ N (0, 1).

Theorem (Nourdin-Peccati, 2009)
For q ≥ 1, let F ∈ Cq have unit variance. Then,

Var

� 1
q

�DF�2
H

�
≤ q − 1

3q

�
E [F 4] − 3

�
.

In particular,

dTV (F , N) ≤ 2Var

� 1
q

�DF�2
H

�1/2
≤ 2√

3

�
E [F 4] − 3.

This result allows one to recover a fourth moment theorem on
the Wiener chaos, first proved by Nualart and Peccati (2005).
Multidimensional version: Peccati and Tudor (2005). See also
recent works by Nourdin, Poly and Nualart.
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Second order Poincaré inequalities

Recall the Poincaré inequality: for every F ∈ domD,

Var(F ) ≤ E [�DF�2
H].

Theorem (Nourdin, Peccati, Reinert, 2010)
Let F ∈ domD be centered and with unit variance, and

N ∼ N (0, 1). Then, one has the second-order estimate

dTV (F , N) ≤ 2
√

5E [�DF�4
H]

1/4 × E [�D
2
F�4

op
]1/4.

Note: a second order Poincaré inequality in the
finite-dimensional case was introduced by Chatterjee in 2007.
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Some extensions

Criteria for optimal rates (Biermé, Bonami, Nourdin,
Peccati, 2009, 2011 )

Chaos of a general Markov operator (Ledoux, 2011)
The Nourdin-Viens formula (2010). If
gF (F ) = E [�DF , −DL−1F �H|F ] > 0 a.s., then F has a
density:

ρ(x) =
E |F |

2gF (x)
exp

�
−

�
x

0

y

gF (y)
dy

�
.

For instance, if gF (x) ≤ αx + β, then

P(F ≥ x) ≤ exp
�

− x2

2αx + 2β

�

, x ≥ 0.

Almost sure CLTs (Bercu, Nourdin, Taqqu, 2011)
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Some applications

High-frequency limit theorems for spherical fields (Baldi,
Kerkyacharian, Lan, Marinucci, Peccati, Picard, Wigman)
Asymptotic results for fractional processes
(Bandorff-Nielsen, Biermé, Corcuera, Léon, Nourdin,
Nualart, Peccati, Podoloskij, Tudor, Viens)
Gaussian polymers (Viens)
Universality principles for homogeneous sums (Nourdin,
Peccati, Reinert)
Fluctuations of traces of random matrices (Nourdin,
Peccati)
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Switching to Poisson

(Z , Z) is a Polish space.
Given a σ-finite non atomic measure µ, we denote by η a
Poisson measure with control µ, and its compensated
counterpart is �η = η(·) − µ(·).
Recall: for every A, B such that A ∩ B = ∅ and
µ(A), µ(B) < ∞, η(A) and η(B) are two independent
Poisson r.v.’s of parameters µ(A), µ(B).

Recall also the Chen-Stein Lemma: a random variable
F ∈ Z+ has the Po(λ) distribution if and only if, for every g

bounded,
E [Fg(F )] = λE [g(F + 1)].
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Switching to Poisson

For every symmetric square-integrable function f in q

variables, we define the multiple Wiener-Itô integral

Iq(f ) =
�

Z

· · ·
�

Z

f (x1, ..., xq)1{no diagonals}η̂(dx1) · · · η̂(dxq).

Recall that every F ∈ L2(σ(η)) can be written as:
F = E(F ) +

�∞
q=1 Iq(fq).
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Switching to Poisson

The derivative operator is: DzF =
�

q qIq−1(fq(z, ·)).
Nualart and Vives (1990): DzF (η) = F (η + δz) − F (η)
(add-one cost).
The O-U generator: LF = −

�
q≥1 qIq(fq).

Pseudo-inverse of the O-U generator:
L−1F = −

�
q≥1 q−1Iq(fq).

Integration by parts: for every X derivable and F

centered,
E [XF ] = E [�DX , −DL

−1
F �µ].
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A Gaussian/Poisson alternative

Let N ∼ N (0, 1) and X ∼ Po(λ), λ > 0.

Theorem (Peccati-Solé-Taqqu-Utzet, 2010; Peccati 2012)
Let F ∈ domD be centered and have unit variance

dW (F , N) ≤ E |1 − �DF , −DL
−1

F �µ|

+E

�

Z

(DzF )2|DzL
−1

F |µ(dz).

For a Z+-valued random variable F ∈ domD with mean λ,

dTV (F , Po(λ)) ≤ BλE |λ − �DF , −DL
−1

F �µ|

+CλE

�

Z

|(DzF )(DzF − 1)DzL
−1

F |µ(dz),

where Bλ := 1−e−λ

λ = λCλ.
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Applications

Several new applications in stochastic geometry, starting from a
paper by Reitzner and Schulte (2010): geometric random
graphs, k -flat processes, Poisson-Voronoi approximations, ...
(Lachièze-Rey, Last, Peccati, Penrose, Schulte, Thaele).

An important role in these applications is played by geometric
U-statistics.
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A simple example

Let η be a Poisson measure on R2, with control equal to
the Lebesgue measure. Define

Wn =
�
−1

2
√

n,
1
2

√
n

�2
, n = 1, 2, ..., .

Let {rn} be a non-increasing sequence of positive
numbers. For every n, we consider the disk graph
Gn = (Vn, En), where

Vn = Wn ∩ η, En = {(x , y) : 0 < |x − y | < rn}.

We are interested in the asymptotic behavior of

Mn = #{edges of Gn}, �Mn =
Mn − E [Mn]�

Var(Mn)
.
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A simple example

One has that:

(i) If nr2
n → ∞, then �Mn

LAW→ N (0, 1);

(ii) If nr2
n → λ ∈ (0,+∞), then Mn

TV→ Po(λ);

(iii) If nr2
n → 0, then Mn, �Mn

L1
→ 0.

Our bounds then give

dW ( �Mn, N (0, 1)) ≤ C1

rn

√
n

dTV (Mn, Po(λ�)) ≤ |nr
2
n − λ| + C2rn.
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Thank you! Merci!
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