Some concentration inequalities that are useful in statistics on point processes.

P. Reynaud-Bouret
CNRS - LJAD University of Nice
Journées MAS, Clermont-Ferrand, 2012

Contents

(1) Practical examples and Definitions

Contents

(1) Practical examples and Definitions

(2) Test

Contents

(1) Practical examples and Definitions
(2) Test
(3) Estimation

- Model selection, Talagrand inequality and Poisson processes
- Model selection, Talagrand and other processes
- Thresholding and Poisson processes
- Lasso and other counting processes

Neuroscience and neuronal unitary activity

Neuronal data and Unitary Events

Unitary (Coincident) Events

Genomics and Transcription Regulatory Elements

Point processes and Poisson processes

Point process
$N=$ random countable set of points of \mathbb{R} (here).

Point processes and Poisson processes

Point process
$N=$ random countable set of points of \mathbb{R} (here).
N_{A} number of points of N in $A, N_{t}=N_{[0, t]}$, $d N_{t}=\sum_{T \text { point de } N} \delta_{T} . \int f(t) d N_{t}=\sum_{T \in N} f(T)$

Point processes and Poisson processes

Point process

$N=$ random countable set of points of \mathbb{R} (here).
N_{A} number of points of N in $A, N_{t}=N_{[0, t]}$, $d N_{t}=\sum_{T}$ point de $N \delta_{T}$.

Poisson processes

- for all integer n, for all A_{1}, \ldots, A_{n} disjoint measurable subsets of $\mathbb{X}, N_{A_{1}}, \ldots, N_{A_{n}}$ are independent random variables.

Point processes and Poisson processes

Point process

$N=$ random countable set of points of \mathbb{R} (here).
N_{A} number of points of N in $A, N_{t}=N_{[0, t]}$, $d N_{t}=\sum_{T}$ point de $N \delta_{T}$.

Poisson processes

- for all integer n, for all A_{1}, \ldots, A_{n} disjoint measurable subsets of $\mathbb{X}, N_{A_{1}}, \ldots, N_{A_{n}}$ are independent random variables.
- for all measurable subset A of \mathbb{X}, N_{A} obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

Point processes and Poisson processes

Point process

$N=$ random countable set of points of \mathbb{R} (here).
N_{A} number of points of N in $A, N_{t}=N_{[0, t]}$, $d N_{t}=\sum_{T}$ point de $N \delta_{T}$.

Poisson processes

- for all integer n, for all A_{1}, \ldots, A_{n} disjoint measurable subsets of $\mathbb{X}, N_{A_{1}}, \ldots, N_{A_{n}}$ are independent random variables.
- for all measurable subset A of \mathbb{X}, N_{A} obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

Point processes and Poisson processes

Point process

$N=$ random countable set of points of \mathbb{R} (here).
N_{A} number of points of N in $A, N_{t}=N_{[0, t]}$, $d N_{t}=\sum_{T}$ point de $N \delta_{T}$.

Poisson processes

- for all integer n, for all A_{1}, \ldots, A_{n} disjoint measurable subsets of $\mathbb{X}, N_{A_{1}}, \ldots, N_{A_{n}}$ are independent random variables.
- for all measurable subset A of \mathbb{X}, N_{A} obeys a Poisson law with parameter depending on A and denoted $\ell(A)$.

Usually $d \ell=\lambda(t) d t, \lambda(t)$ is the intensity, if constant \rightarrow homogeneous

Basic questions for Poisson processes

- Is $\lambda(t)$ constant ? ie is the process stationary ?

Basic questions for Poisson processes

- Is $\lambda(t)$ constant ? ie is the process stationary ?
\rightarrow it highly depends on the experiment ! \rightarrow Test of homogeneity

Basic questions for Poisson processes

- Is $\lambda(t)$ constant ? ie is the process stationary ?
\rightarrow it highly depends on the experiment ! \rightarrow Test of homogeneity
- Are the processes identically distributed ?

Basic questions for Poisson processes

- Is $\lambda(t)$ constant ? ie is the process stationary ?
\rightarrow it highly depends on the experiment ! \rightarrow Test of homogeneity
- Are the processes identically distributed ? \rightarrow Two-sample tests

Basic questions for Poisson processes

- Is $\lambda(t)$ constant ? ie is the process stationary ? \rightarrow it highly depends on the experiment ! \rightarrow Test of homogeneity
- Are the processes identically distributed ? \rightarrow Two-sample tests
- Are they dependent ? \rightarrow Independence tests

Basic questions for Poisson processes

- Is $\lambda(t)$ constant ? ie is the process stationary ?
\rightarrow it highly depends on the experiment ! \rightarrow Test of homogeneity
- Are the processes identically distributed ? \rightarrow Two-sample tests
- Are they dependent ? \rightarrow Independence tests
- Can we detect it locally ? \rightarrow multiple "adaptive" testing problems ...
- Where are the poor or rich regions ? \rightarrow Non parametric estimation

Synergy and Hawkes processes

Genomics	Neuroscience
"events" on the DNA	
"work" together in synergy (TRE)	

Synergy and Hawkes processes

Genomics	Neuroscience
"events" on the DNA "work" together in synergy (TRE)	Of course "neurons" work together.

Synergy and Hawkes processes

Genomics	Neuroscience
"events" on the DNA "work" together in synergy (TRE)	Of course "neurons" work together.
If two motifs are part of a common biological process, the distance \simeq fixed	
$\overrightarrow{\text { favored or avoided distances }}$ (Gusto, Schbath (2005))	

Synergy and Hawkes processes

Genomics	Neuroscience
"events" on the DNA "work" together in synergy (TRE)	Of course "neurons" work together.
If two motifs are part of a common biological process, the distance \simeq fixed \rightarrow favored or avoided distances (Gusto, Schbath (2005))	When recorded, a fixed delay between spikes hints for a functional/physical link.

Intensity

Usually \mathbb{R} is thought as time

Intensity

$t \rightarrow \lambda(t)$ where $\lambda(t) d t$ represents the probability to have a point at time t conditionnally to the past before $t(s<t)$

Intensity

Usually \mathbb{R} is thought as time

Intensity

$t \rightarrow \lambda(t)$ where $\lambda(t) d t$ represents the probability to have a point at time t conditionnally to the past before $t(s<t)$
"Past" contains in particular the previous occurrences of points.

Intensity

Usually \mathbb{R} is thought as time

Intensity

$t \rightarrow \lambda(t)$ where $\lambda(t) d t$ represents the probability to have a point at time t conditionnally to the past before $t(s<t)$
"Past" contains in particular the previous occurrences of points. NB : for Genomics, \mathbb{R} is the DNA strand. The "past" may be interpreted as what has already been read in a prescribed direction (e.g. 5'-3' or $3^{\prime}-5$ ').

Intensity

Usually \mathbb{R} is thought as time

Intensity

$t \rightarrow \lambda(t)$ where $\lambda(t) d t$ represents the probability to have a point at time t conditionnally to the past before $t(s<t)$
"Past" contains in particular the previous occurrences of points. NB: for Genomics, \mathbb{R} is the DNA strand. The "past" may be interpreted as what has already been read in a prescribed direction (e.g. 5'-3' or 3'-5').

NB2 : $\left(N_{t}-\int_{0}^{t} \lambda(s) d s\right)_{t}$ is a martingale.

The simple Hawkes process

The intensity $\lambda(t)$ is given by

The simple Hawkes process

The intensity $\lambda(t)$ is given by

The simple Hawkes process

The intensity $\lambda(t)$ is given by

$$
\nu \quad+\quad \sum_{T \in N} h(t-T)
$$

Spontaneous
Self-exciting

The simple Hawkes process

The intensity $\lambda(t)$ is given by

$$
\nu \quad+\quad \sum_{T \in N} h(t-T)
$$

Spontaneous
Self-exciting

The simple Hawkes process

The intensity $\lambda(t)$ is given by

$$
\nu \quad+\quad \sum_{\boldsymbol{T} \in N} h(t-T)
$$

Spontaneous
Self-exciting
The most classical case corresponds to $h>0$ (see Hawkes (1971)).

The simple Hawkes process

The intensity $\lambda(t)$ is given by

$$
\left(\nu \quad+\sum_{T \in N} h(t-T)\right)_{+}
$$

The most classical case corresponds to $h>0$ (see Hawkes (1971)).

The Hawkes process interaction with itself + an additional interaction

$$
\lambda(t)=
$$

The Hawkes process interaction with itself + an additional interaction

$$
\lambda(t)=
$$

$$
\nu
$$

Spontaneous

The Hawkes process interaction with itself + an additional interaction

$$
\begin{array}{lll}
\lambda(t)= \\
\nu & + & \sum_{T \in N} h(t-T) \\
\text { Spontaneous } & & \text { Self-interaction } \\
\hline
\end{array}
$$

The Hawkes process interaction with itself + an additional interaction
$\lambda(t)=$
$\nu \quad+\quad \sum_{T \in N} h(t-T)+\quad \sum_{X \in N_{2}} h_{2}(t-X)$
Spontaneous Self-interaction Interaction with other type

The Hawkes process interaction with itself + an additional interaction

$$
\lambda(t)=
$$

$$
\left(\nu \quad+\sum_{T \in N} h(t-T)+\sum_{X \in N_{2}} h_{2}(t-X)\right)_{+}
$$

Spontaneous \quad Self-interaction \quad Interaction with other type
If h is null and if N_{2} is fixed (no reciprocal interaction), then N is a
Poisson process given N_{2}.

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)= \\
& \lambda^{(2)}(t)= \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{array}{ll}
\lambda^{(1)}(t)=\quad \nu_{1} \\
\lambda^{(2)}(t)= & \\
\lambda^{(r)}(t)= &
\end{array}
$$

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\lambda^{(1)}(t)=\quad \nu_{1} \quad+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T)
$$

$$
\lambda^{(2)}(t)=
$$

$$
\lambda^{(r)}(t)=
$$

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\lambda^{(1)}(t)=\quad \nu_{1} \quad+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T)
$$

$$
\lambda^{(2)}(t)=
$$

$$
\lambda^{(r)}(t)=
$$

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\lambda^{(1)}(t)=\quad \nu_{1} \quad+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T)
$$

$$
\lambda^{(2)}(t)=
$$

$$
\lambda^{(r)}(t)=
$$

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\lambda^{(1)}(t)=\quad \nu_{1} \quad+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T)
$$

$$
\lambda^{(2)}(t)=
$$

$$
\lambda^{(r)}(t)=
$$

The multivariate Hawkes process
One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T) \quad+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
& \lambda^{(2)}(t)= \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T)+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
& \lambda^{(2)}(t)=\nu_{2} \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

\qquad

The multivariate Hawkes process

One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T) \quad+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
& \lambda^{(2)}(t)=\nu_{2} \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

\qquad

The multivariate Hawkes process
One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T) \quad+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
& \lambda^{(2)}(t)=\nu_{2}+\sum_{T \in N^{(2)}} h_{2}^{(2)}(t-T) \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

The multivariate Hawkes process
One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T) \quad+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
& \lambda^{(2)}(t)=\nu_{2}+\sum_{T \in N^{(2)}} h_{2}^{(2)}(t-T) \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

The multivariate Hawkes process
One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{aligned}
& \lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T) \quad+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
& \lambda^{(2)}(t)=\nu_{2}+\sum_{T \in N^{(2)}} h_{2}^{(2)}(t-T) \\
& \lambda^{(r)}(t)=
\end{aligned}
$$

The multivariate Hawkes process
One observes $N^{(1)}, \ldots, N^{(r)}, \ldots, N^{(M)}$ processes such that

$$
\begin{array}{ll}
\lambda^{(1)}(t)=\nu_{1}+\sum_{T \in N^{(1)}} h_{1}^{(1)}(t-T)+\sum_{\ell \neq 1} \sum_{T \in N^{(\ell)}} h_{\ell}^{(1)}(t-T) \\
\lambda^{(2)}(t)=\nu_{2}+\sum_{T \in N^{(2)}} h_{2}^{(2)}(t-T)+\sum_{\ell \neq 2} \sum_{T \in N^{(\ell)}}^{(2)}(t-T) \\
\lambda_{\ell}^{(r)}(t)=
\end{array}
$$

The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez (2008))

The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez (2008))

The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez (2008))

Hence we need a sparse adaptive estimation (functions, support of the functions)!

Test and level

In the Poisson process framework, observe N with intensity λ and find a test Δ of

$$
\mathrm{H}_{0}: " \lambda \text { is constant " against } \mathrm{H}_{1}: " \text { it is not" }
$$

The test is of level α if $\mathbb{P}_{H_{0}}(\Delta=1) \leq \alpha$

Test and level

In the Poisson process framework, observe N with intensity λ and find a test Δ of

$$
\mathrm{H}_{0}: " \lambda \text { is constant " against } \mathrm{H}_{1}: " \text { it is not" }
$$

The test is of level α if $\mathbb{P}_{H_{0}}(\Delta=1) \leq \alpha$

Power and practice

The power is $\lambda \in H_{1} \rightarrow \mathbb{P}_{\lambda}(\Delta=1)$.

- when λ is almost constant, power $\simeq \mathbb{P}_{H_{0}}(\Delta=1)$.

Power and practice

The power is $\lambda \in H_{1} \rightarrow \mathbb{P}_{\lambda}(\Delta=1)$.

- when λ is almost constant, power $\simeq \mathbb{P}_{H_{0}}(\Delta=1)$.
- best to have $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$

Power and practice

The power is $\lambda \in H_{1} \rightarrow \mathbb{P}_{\lambda}(\Delta=1)$.

- when λ is almost constant, power $\simeq \mathbb{P}_{H_{0}}(\Delta=1)$.
- best to have $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$
- Morever gives in practice access to meaningful p-values (value of α, depending on the observed N where the test changes its decision)

Power and practice

The power is $\lambda \in H_{1} \rightarrow \mathbb{P}_{\lambda}(\Delta=1)$.

- when λ is almost constant, power $\simeq \mathbb{P}_{H_{0}}(\Delta=1)$.
- best to have $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$
- Morever gives in practice access to meaningful p-values (value of α, depending on the observed N where the test changes its decision)
- Also p-values involved in multiple testing procedures ...

Power and practice

The power is $\lambda \in H_{1} \rightarrow \mathbb{P}_{\lambda}(\Delta=1)$.

- when λ is almost constant, power $\simeq \mathbb{P}_{H_{0}}(\Delta=1)$.
- best to have $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$
- Morever gives in practice access to meaningful p-values (value of α, depending on the observed N where the test changes its decision)
- Also p-values involved in multiple testing procedures ...
- To guarantee $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$, best to have some statistics whose law known under H_{0}.

Power and practice

The power is $\lambda \in H_{1} \rightarrow \mathbb{P}_{\lambda}(\Delta=1)$.

- when λ is almost constant, power $\simeq \mathbb{P}_{H_{0}}(\Delta=1)$.
- best to have $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$
- Morever gives in practice access to meaningful p-values (value of α, depending on the observed N where the test changes its decision)
- Also p-values involved in multiple testing procedures ...
- To guarantee $\mathbb{P}_{H_{0}}(\Delta=1)=\alpha$, best to have some statistics whose law known under H_{0}.
- Here, conditionally to the total number of points is n, points behave under H_{0} as a n uniform iid sample \rightarrow easy access to quantile

Alternatives and choice of the test statistics

But here, the alternatives are

- NOT : parametric, smooth, detectable by Kolmogorov Smirnov

Alternatives and choice of the test statistics

But here, the alternatives are

- NOT : parametric, smooth, detectable by Kolmogorov Smirnov
- more likely to have spiky distributions with unknown support

Alternatives and choice of the test statistics

But here, the alternatives are

- NOT : parametric, smooth, detectable by Kolmogorov Smirnov
- more likely to have spiky distributions with unknown support

Best to project on a wavelet (Haar) basis and reject when, say, one/few coefficients too high.

Alternatives and choice of the test statistics

But here, the alternatives are

- NOT : parametric, smooth, detectable by Kolmogorov Smirnov
- more likely to have spiky distributions with unknown support Best to project on a wavelet (Haar) basis and reject when, say, one/few coefficients too high.
"High" = quantile under H_{0}.

Alternatives and choice of the test statistics

But here, the alternatives are

- NOT : parametric, smooth, detectable by Kolmogorov Smirnov
- more likely to have spiky distributions with unknown support Best to project on a wavelet (Haar) basis and reject when, say, one/few coefficients too high.
"High" = quantile under H_{0}.
Problem $=$ we don't know which coefficients \rightarrow aggregation of tests.

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)}
$$

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)},
$$

with $\phi_{0}(x)=\mathbf{1}_{[0,1]}(x)$ and $\phi_{(j, k)}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ where $\psi(x)=\mathbf{1}_{[0,1 / 2[}(x)-\mathbf{1}_{[1 / 2,1[}(x)$.

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)},
$$

with $\phi_{0}(x)=\mathbf{1}_{[0,1]}(x)$ and $\phi_{(j, k)}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ where $\psi(x)=\mathbf{1}_{[0,1 / 2[}(x)-\mathbf{1}_{[1 / 2,1[}(x)$.
We want to reject when the distance between s and
$S_{0}=\operatorname{Span}\left(\phi_{0}\right)$ is too large.

- Approximate $d\left(s, S_{0}\right)^{2}$ by $\sum_{(j, k) \in m} \alpha_{(j, k)}^{2}$.

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)},
$$

with $\phi_{0}(x)=\mathbf{1}_{[0,1]}(x)$ and $\phi_{(j, k)}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ where
$\psi(x)=\mathbf{1}_{[0,1 / 2[}(x)-\mathbf{1}_{[1 / 2,1[}(x)$.
We want to reject when the distance between s and
$S_{0}=\operatorname{Span}\left(\phi_{0}\right)$ is too large.

- Approximate $d\left(s, S_{0}\right)^{2}$ by $\sum_{(j, k) \in m} \alpha_{(j, k)}^{2}$.
- Estimate it unbiasly by $T_{m}=\sum_{(j, k) \in m} T_{(j, k)}$ with m finite and

$$
T_{(j, k)}=\widehat{\alpha}_{(j, k)}^{2}-\frac{1}{L^{2}} \int \phi_{(j, k)}^{2} d N
$$

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)},
$$

with $\phi_{0}(x)=\mathbf{1}_{[0,1]}(x)$ and $\phi_{(j, k)}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ where $\psi(x)=\mathbf{1}_{[0,1 / 2[}(x)-\mathbf{1}_{[1 / 2,1[}(x)$.
We want to reject when the distance between s and
$S_{0}=\operatorname{Span}\left(\phi_{0}\right)$ is too large.

- Approximate $d\left(s, S_{0}\right)^{2}$ by $\sum_{(j, k) \in m} \alpha_{(j, k)}^{2}$.
- Estimate it unbiasly by $T_{m}=\sum_{(j, k) \in m} T_{(j, k)}$ with m finite and

$$
T_{(j, k)}=\widehat{\alpha}_{(j, k)}^{2}-\frac{1}{L^{2}} \int \phi_{(j, k)}^{2} d N=\sum_{l \neq l^{\prime}} \phi_{(j, k)}\left(X_{l}\right) \phi_{(j, k)}\left(X_{l^{\prime}}\right)
$$

where N is the set of points X_{l} 's.

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)},
$$

with $\phi_{0}(x)=\mathbf{1}_{[0,1]}(x)$ and $\phi_{(j, k)}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ where $\psi(x)=\mathbf{1}_{[0,1 / 2[}(x)-\mathbf{1}_{[1 / 2,1[}(x)$.
We want to reject when the distance between s and
$S_{0}=\operatorname{Span}\left(\phi_{0}\right)$ is too large.

- Approximate $d\left(s, S_{0}\right)^{2}$ by $\sum_{(j, k) \in m} \alpha_{(j, k)}^{2}$.
- Estimate it unbiasly by $T_{m}=\sum_{(j, k) \in m} T_{(j, k)}$ with m finite and

$$
T_{(j, k)}=\widehat{\alpha}_{(j, k)}^{2}-\frac{1}{L^{2}} \int \phi_{(j, k)}^{2} d N=\sum_{l \neq l^{\prime}} \phi_{(j, k)}\left(X_{l}\right) \phi_{(j, k)}\left(X_{l^{\prime}}\right)
$$

where N is the set of points X_{l} 's.

- we reject when $T_{m}>t_{m, \alpha}^{\left(N_{\text {tot }}\right)}$.

Notations

Let $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$ and s unknown such that

$$
s=\alpha_{0} \phi_{0}+\sum_{j \in \mathbb{N}} \sum_{k=0}^{2^{j}-1} \alpha_{(j, k)} \phi_{(j, k)},
$$

with $\phi_{0}(x)=\mathbf{1}_{[0,1]}(x)$ and $\phi_{(j, k)}(x)=2^{j / 2} \psi\left(2^{j} x-k\right)$ where $\psi(x)=\mathbf{1}_{[0,1 / 2[}(x)-\mathbf{1}_{[1 / 2,1[}(x)$.
We want to reject when the distance between s and
$S_{0}=\operatorname{Span}\left(\phi_{0}\right)$ is too large.

- Approximate $d\left(s, S_{0}\right)^{2}$ by $\sum_{(j, k) \in m} \alpha_{(j, k)}^{2}$.
- Estimate it unbiasly by $T_{m}=\sum_{(j, k) \in m} T_{(j, k)}$ with m finite and

$$
T_{(j, k)}=\widehat{\alpha}_{(j, k)}^{2}-\frac{1}{L^{2}} \int \phi_{(j, k)}^{2} d N=\sum_{l \neq l^{\prime}} \phi_{(j, k)}\left(X_{l}\right) \phi_{(j, k)}\left(X_{l^{\prime}}\right)
$$

where N is the set of points X_{l} 's.

- we reject when $T_{m}>t_{m, \alpha}^{\left(N_{\text {tot }}\right)}$.
- $t_{m, \alpha}^{(n)}$ the $1-\alpha$ quantile of the conditional distribution.

Aggregation

Let \mathcal{M} be a family of subsets of indices.
Reject rule there exists one $m \in \mathcal{M}$ such that $T_{m}>t_{m, \alpha_{m}}^{(N)}$,

Aggregation

Let \mathcal{M} be a family of subsets of indices.

Reject rule

there exists one $m \in \mathcal{M}$ such that $T_{m}>t_{m, \alpha_{m}}^{(N)}$, where under $\mathrm{H}_{0}, \mathbb{P}\left(\exists m \in \mathcal{M}, T_{m}>t_{m, \alpha_{m}}^{(N)}\right) \leq \alpha$.

Aggregation

Let \mathcal{M} be a family of subsets of indices.

Reject rule

 there exists one $m \in \mathcal{M}$ such that $T_{m}>t_{m, \alpha_{m}}^{(N)}$, where under $\mathrm{H}_{0}, \mathbb{P}\left(\exists m \in \mathcal{M}, T_{m}>t_{m, \alpha_{m}}^{(N)}\right) \leq \alpha$.- Basic choice : Bonferroni $\alpha_{m}=\frac{\alpha}{|\mathcal{M}|}$.

Aggregation

Let \mathcal{M} be a family of subsets of indices.

Reject rule

 there exists one $m \in \mathcal{M}$ such that $T_{m}>t_{m, \alpha_{m}}^{(N)}$, where under $\mathrm{H}_{0}, \mathbb{P}\left(\exists m \in \mathcal{M}, T_{m}>t_{m, \alpha_{m}}^{(N)}\right) \leq \alpha$.- Basic choice : Bonferroni $\alpha_{m}=\frac{\alpha}{|\mathcal{M}|}$.
- with weights : $\alpha_{m}=\alpha e^{-W_{m}}$ such that $\sum e^{-W_{m}} \leq 1$

Aggregation

Let \mathcal{M} be a family of subsets of indices.

Reject rule

 there exists one $m \in \mathcal{M}$ such that $T_{m}>t_{m, \alpha_{m}}^{(N)}$, where under $\mathrm{H}_{0}, \mathbb{P}\left(\exists m \in \mathcal{M}, T_{m}>t_{m, \alpha_{m}}^{(N)}\right) \leq \alpha$.- Basic choice : Bonferroni $\alpha_{m}=\frac{\alpha}{|\mathcal{M}|}$.
- with weights : $\alpha_{m}=\alpha e^{-W_{m}}$ such that $\sum e^{-W_{m}} \leq 1$
- refined for simulation (possible to guarantee equality in the level)

Need of concentration ?

For λ in H_{1}, Error of 2 nd kind $=$ $\mathbb{P}_{\lambda}\left(\forall m \in \mathcal{M}, T_{m} \leq t_{m, \alpha_{m}}^{(N)}\right) \leq \mathbb{P}_{\lambda}\left(T_{m} \leq t_{m, \alpha_{m}}^{(N)}\right)$ for all m in \mathcal{M}.

Need of concentration ?

For λ in H_{1}, Error of 2 nd kind $=$
$\mathbb{P}_{\lambda}\left(\forall m \in \mathcal{M}, T_{m} \leq t_{m, \alpha_{m}}^{(N)}\right) \leq \mathbb{P}_{\lambda}\left(T_{m} \leq t_{m, \alpha_{m}}^{(N)}\right)$ for all m in \mathcal{M}.
How $t_{m, \alpha_{m}}^{(N)}=t_{m, \frac{\alpha}{|\mathcal{M}|}}^{(N)}$ deteriorates with respect $|\mathcal{M}|$?

Need of concentration?

For λ in H_{1}, Error of 2 nd kind $=$
$\mathbb{P}_{\lambda}\left(\forall m \in \mathcal{M}, T_{m} \leq t_{m, \alpha_{m}}^{(N)}\right) \leq \mathbb{P}_{\lambda}\left(T_{m} \leq t_{m, \alpha_{m}}^{(N)}\right)$ for all m in \mathcal{M}.
How $t_{m, \alpha_{m}}^{(N)}=t_{m, \frac{\alpha}{\mathcal{M} \mid}}^{(N)}$ deteriorates with respect $|\mathcal{M}|$?
\rightarrow how $t_{m, \alpha}^{(N)}$ depends on α ?

- if there is exponential decay, possible to aggregate $|\mathcal{M}|$ without losing much more than a logarithmic term
- Hence methods powerful against "ugly" alternatives (such as weak Besov spaces) and usually minimax if well done ...

Concentration of U-statistics

T_{m} is a degenerate U -statistics of order 2 under H_{0} conditionnally to $N_{\text {tot }}=n$, ie it's a

$$
U_{n}=\sum_{i \neq j} g\left(X_{i}, X_{j}\right)
$$

with g symmetric $\mathbb{E}\left(g\left(X_{i}, X_{j}\right) \mid X_{j}\right)=0$.
Theorem
If $\|g\|_{\infty} \leq A$ then for all $u, \varepsilon>0$

$$
\mathbb{P}\left(U_{n} \geq 2(1+\varepsilon)^{3 / 2} C \sqrt{u}+\square_{\varepsilon} D u+\square_{\varepsilon} B u^{3 / 2}+\square_{\varepsilon} A u^{2}\right) \leq \square e^{-u}
$$

with $C^{2}=\sum_{i \neq j} \mathbb{E}\left(g\left(X_{i}, X_{j}\right)^{2}\right)$ and B and D other functions of g.

Concentration of U-statistics

T_{m} is a degenerate U -statistics of order 2 under H_{0} conditionnally to $N_{\text {tot }}=n$, ie it's a

$$
U_{n}=\sum_{i \neq j} g\left(X_{i}, X_{j}\right)
$$

with g symmetric $\mathbb{E}\left(g\left(X_{i}, X_{j}\right) \mid X_{j}\right)=0$.
Theorem
If $\|g\|_{\infty} \leq A$ then for all $u, \varepsilon>0$

$$
\mathbb{P}\left(U_{n} \geq 2(1+\varepsilon)^{3 / 2} C \sqrt{u}+\square_{\varepsilon} D u+\square_{\varepsilon} B u^{3 / 2}+\square_{\varepsilon} A u^{2}\right) \leq \square e^{-u}
$$

with $C^{2}=\sum_{i \neq j} \mathbb{E}\left(g\left(X_{i}, X_{j}\right)^{2}\right)$ and B and D other functions of g.

- without constants Giné, Latala, Zinn (2000)
- with constant Houdré, RB (2003) - also Poisson processes
- higher order Adamczak (2006)

Conclusions for testing

- Concentration inequalities are a tool to evaluate the dependency in α of the $1-\alpha$ quantile
- In the upper bound, no need for precise constants or observable quantities
- But dependency of for instance, A, B, C, D in m crucial... Best if dimension free or dependency in m as small as possible \rightarrow choice of the test statistics and the \mathcal{M} 's.

Poisson case

Here again $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$, s unknown.
Least square contrast

$$
\gamma(f)=-\frac{2}{L} \int f(t) d N_{t}+\int f^{2}(t) d t
$$

Poisson case

Here again $\lambda(t)=\operatorname{Ls}(t)$ with L known $(\rightarrow \infty)$, s unknown.
Least square contrast

$$
\gamma(f)=-\frac{2}{L} \int f(t) d N_{t}+\int f^{2}(t) d t
$$

$\mathbb{E}(\gamma(f))=-2<f, s>+\|f\|^{2}=\|f-s\|^{2}-\|s\|^{2}$ minimal when $f=s$.

- Let S_{m} be any finite vectorial subspace with ONB $\left(\varphi_{\lambda}, \lambda \in \Lambda_{m}\right)$.
- $\hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$

Poisson case

Here again $\lambda(t)=\operatorname{Ls}(t)$ with L known $(\rightarrow \infty)$, s unknown.
Least square contrast

$$
\gamma(f)=-\frac{2}{L} \int f(t) d N_{t}+\int f^{2}(t) d t
$$

$\mathbb{E}(\gamma(f))=-2<f, s>+\|f\|^{2}=\|f-s\|^{2}-\|s\|^{2}$ minimal when $f=s$.

- Let S_{m} be any finite vectorial subspace with ONB $\left(\varphi_{\lambda}, \lambda \in \Lambda_{m}\right)$.
- $\hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$
- $\mathbb{E}\left(\left\|s-\hat{s}_{m}\right\|^{2}\right)=\left\|s-s_{m}\right\|^{2}+\frac{1}{L} \sum_{\lambda \in \Lambda_{m}} \int \varphi_{\lambda}^{2}(t) s(t) d t \leq$ $\left\|s-s_{m}\right\|^{2}+\frac{|m|}{L}\|s\|_{\infty} . \rightarrow$ penalisation

Poisson case

Here again $\lambda(t)=L s(t)$ with L known $(\rightarrow \infty)$, s unknown.
Least square contrast

$$
\gamma(f)=-\frac{2}{L} \int f(t) d N_{t}+\int f^{2}(t) d t
$$

$\mathbb{E}(\gamma(f))=-2<f, s>+\|f\|^{2}=\|f-s\|^{2}-\|s\|^{2}$ minimal when $f=s$.

- Let S_{m} be any finite vectorial subspace with ONB $\left(\varphi_{\lambda}, \lambda \in \Lambda_{m}\right)$.
- $\hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$
- $\mathbb{E}\left(\left\|s-\hat{s}_{m}\right\|^{2}\right)=\left\|s-s_{m}\right\|^{2}+\frac{1}{L} \sum_{\lambda \in \Lambda_{m}} \int \varphi_{\lambda}^{2}(t) s(t) d t \leq$ $\left\|s-s_{m}\right\|^{2}+\frac{|m|}{L}\|s\|_{\infty} . \rightarrow$ penalisation

Penalized model selection

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left\{\gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m)\right\}
$$

An easy calculus (1)

$$
\begin{aligned}
& \qquad \quad \gamma(f)=-\frac{2}{L} \int f(t)\left(d N_{t}-s(t) d t\right)+\|f-s\|^{2}-\|s\|^{2} \\
& \text { Let } \delta(f)=\frac{1}{L} \int f(t)\left(d N_{t}-L s(t) d t\right) \text { (zero mean) }
\end{aligned}
$$

An easy calculus (1)

$$
\begin{gathered}
\gamma(f)=-\frac{2}{L} \int f(t)\left(d N_{t}-s(t) d t\right)+\|f-s\|^{2}-\|s\|^{2} . \\
\text { Let } \delta(f)=\frac{1}{L} \int f(t)\left(d N_{t}-L s(t) d t\right) \text { (zero mean) } \\
\gamma(f)=-2 \delta(f)+\|f-s\|^{2}-\|s\|^{2} .
\end{gathered}
$$

Moreover for all $m \in \mathcal{M}$

$$
\gamma\left(\hat{s}_{\tilde{m}}\right)+\operatorname{pen}(\hat{m}) \leq \gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m) \leq \gamma\left(s_{m}\right)+\operatorname{pen}(m) .
$$

An easy calculus (1)

$$
\begin{gathered}
\gamma(f)=-\frac{2}{L} \int f(t)\left(d N_{t}-s(t) d t\right)+\|f-s\|^{2}-\|s\|^{2} . \\
\text { Let } \delta(f)=\frac{1}{L} \int f(t)\left(d N_{t}-L s(t) d t\right) \text { (zero mean) } \\
\gamma(f)=-2 \delta(f)+\|f-s\|^{2}-\|s\|^{2} .
\end{gathered}
$$

Moreover for all $m \in \mathcal{M}$

$$
\gamma\left(\hat{s}_{\tilde{m}}\right)+\operatorname{pen}(\hat{m}) \leq \gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m) \leq \gamma\left(s_{m}\right)+\operatorname{pen}(m) .
$$

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}\right)+2 \delta\left(\hat{s}_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\delta\left(s_{\hat{m}}\right)$)

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\delta\left(s_{\hat{m}}\right)$)
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\sum_{\lambda \in \Lambda_{\hat{m}}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-L s(t) d t\right)\right)^{2}$

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\delta\left(s_{\hat{m}}\right)$)
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\sum_{\lambda \in \Lambda_{\hat{m}}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-L s(t) d t\right)\right)^{2}=\chi^{2}(\hat{m})$

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\delta\left(s_{\hat{m}}\right)$)
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\sum_{\lambda \in \Lambda_{\hat{m}}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-L s(t) d t\right)\right)^{2}=\chi^{2}(\hat{m})$
- $\mathbb{E}\left(\chi^{2}(m)\right)=\frac{1}{L} \sum_{\lambda \in \Lambda_{m}} \int \varphi_{\lambda}^{2}(t) s(t) d t$ ie variance

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\delta\left(s_{\hat{m}}\right)$)
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\sum_{\lambda \in \Lambda_{\hat{m}}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-L s(t) d t\right)\right)^{2}=\chi^{2}(\hat{m})$
- $\mathbb{E}\left(\chi^{2}(m)\right)=\frac{1}{L} \sum_{\lambda \in \Lambda_{m}} \int \varphi_{\lambda}^{2}(t) s(t) d t$ ie variance
- Hence if $\operatorname{pen}(m) \simeq 2 \times$ variance \rightarrow oracle inequality

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\left.\delta\left(s_{\hat{m}}\right)\right)$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\sum_{\lambda \in \Lambda_{\hat{m}}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-L s(t) d t\right)\right)^{2}=\chi^{2}(\hat{m})$
- $\mathbb{E}\left(\chi^{2}(m)\right)=\frac{1}{L} \sum_{\lambda \in \Lambda_{m}} \int \varphi_{\lambda}^{2}(t) s(t) d t$ ie variance
- Hence if $\operatorname{pen}(m) \simeq 2 \times$ variance \rightarrow oracle inequality
- But $\chi^{2}(\hat{m}) \rightarrow$ control of all the $\chi^{2}(m)$

An easy calculus (2)

Starting point

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- $\delta\left(s_{m}\right) \rightarrow$ negligeable (also $\delta\left(s_{\hat{m}}\right)$)
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\sum_{\lambda \in \Lambda_{\hat{m}}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-L s(t) d t\right)\right)^{2}=\chi^{2}(\hat{m})$
- $\mathbb{E}\left(\chi^{2}(m)\right)=\frac{1}{L} \sum_{\lambda \in \Lambda_{m}} \int \varphi_{\lambda}^{2}(t) s(t) d t$ ie variance
- Hence if $\operatorname{pen}(m) \simeq 2 \times$ variance \rightarrow oracle inequality
- But $\chi^{2}(\hat{m}) \rightarrow$ control of all the $\chi^{2}(m)$
- Exponential inequality

Talagrand type inequality for Poisson processes

$$
\chi(m)=\frac{1}{L} \sup _{\|f\|=1, f \in S_{m}} \int f(t)\left(d N_{t}-L s(t) d t\right)
$$

Talagrand type inequality for Poisson processes

$\chi(m)=\frac{1}{L} \sup _{\|f\|=1, f \in S_{m}} \int f(t)\left(d N_{t}-L s(t) d t\right)$.
Theorem (RB 2003)
Let $\left\{\psi_{a}, a \in A\right\}$ a countable family of functions with values in $[-b ; b]$.

Talagrand type inequality for Poisson processes

$\chi(m)=\frac{1}{L} \sup _{\|f\|=1, f \in S_{m}} \int f(t)\left(d N_{t}-L s(t) d t\right)$.
Theorem (RB 2003)
Let $\left\{\psi_{a}, a \in A\right\}$ a countable family of functions with values in [-b; b].
If $Z=\sup _{a \in A} \int_{\mathbb{X}} \psi_{a}(x)\left(d N_{x}-d \ell_{x}\right)$,

Talagrand type inequality for Poisson processes

$\chi(m)=\frac{1}{L} \sup _{\|f\|=1, f \in S_{m}} \int f(t)\left(d N_{t}-L s(t) d t\right)$.
Theorem (RB 2003)
Let $\left\{\psi_{a}, a \in A\right\}$ a countable family of functions with values in [-b; b].
If $Z=\sup _{a \in A} \int_{\mathbb{X}} \psi_{a}(x)\left(d N_{x}-d \ell_{x}\right)$, then for all $u, \varepsilon>0$,

$$
\mathbb{P}(Z \geq(1+\varepsilon) \mathbb{E}(Z)+2 \sqrt{\kappa v u}+\kappa(\varepsilon) b u) \leq e^{-u},
$$

with $v=\sup _{a \in A} \int_{\mathbb{X}} \psi_{a}^{2}(x) d \ell_{X}$ and $\kappa=6, \kappa(\varepsilon)=1.25+32 \varepsilon^{-1}$.

Talagrand type inequality for Poisson processes

$\chi(m)=\frac{1}{L} \sup _{\|f\|=1, f \in S_{m}} \int f(t)\left(d N_{t}-L s(t) d t\right)$.
Theorem (RB 2003)
Let $\left\{\psi_{a}, a \in A\right\}$ a countable family of functions with values in [-b; b].
If $Z=\sup _{a \in A} \int_{\mathbb{X}} \psi_{a}(x)\left(d N_{x}-d \ell_{x}\right)$, then for all $u, \varepsilon>0$,

$$
\mathbb{P}(Z \geq(1+\varepsilon) \mathbb{E}(Z)+2 \sqrt{\kappa v u}+\kappa(\varepsilon) b u) \leq e^{-u},
$$

with $v=\sup _{a \in A} \int_{\mathbb{X}} \psi_{a}^{2}(x) d \ell_{X}$ and $\kappa=6, \kappa(\varepsilon)=1.25+32 \varepsilon^{-1}$.

Application to $\chi(m)$

Corollary (RB 2003)

Let

$$
M_{m}=\sup _{f \in S_{m},\|f\|=1} \int_{\mathbb{X}} f^{2}(x) s(x) d x \quad \text { et } \quad B_{m}=\sup _{f \in S_{m},\|f\|=1}\|f\|_{\infty}
$$

then for all $u, \varepsilon>0$,

$$
\left.\begin{array}{rl}
\mathbb{P}(\chi(m) \geq(1+\varepsilon) & \sqrt{\frac{1}{L} \sum_{\lambda} \int \varphi_{\lambda}^{2}(x) s(x) d x}+\sqrt{\frac{2 \kappa M_{m} u}{L}}+\kappa(\varepsilon) \frac{B_{m} u}{L}
\end{array}\right)
$$

Oracle inequality for Poisson processes

simplified in the case of piecewise constant models on a fine grid Γ.

Oracle inequality for Poisson processes

 simplified in the case of piecewise constant models on a fine grid Γ.
Proposition (RB 2003)

Let $\left\{L_{m}, m \in \mathcal{M}\right\}$ tq $\sum_{m \in \mathcal{M}} e^{-L_{m}|m|} \leq \Sigma$ with $|\Gamma| \leq L(\ln L)^{-2}$.

Oracle inequality for Poisson processes

 simplified in the case of piecewise constant models on a fine grid Γ.
Proposition (RB 2003)

Let $\left\{L_{m}, m \in \mathcal{M}\right\}$ tq $\sum_{m \in \mathcal{M}} e^{-L_{m}|m|} \leq \Sigma$ with $|\Gamma| \leq L(\ln L)^{-2}$. For all $c>1$, if
$\operatorname{pen}(m)=\frac{c \tilde{M}|m|}{L}\left(1+\sqrt{2 \kappa L_{m}}\right)^{2}$ avec $\tilde{M}=\sup _{I \in \Gamma} \frac{N_{I}}{\mu(I)}$,

Oracle inequality for Poisson processes

 simplified in the case of piecewise constant models on a fine grid Γ.
Proposition (RB 2003)

Let $\left\{L_{m}, m \in \mathcal{M}\right\}$ tq $\sum_{m \in \mathcal{M}} e^{-L_{m}|m|} \leq \Sigma$ with $|\Gamma| \leq L(\ln L)^{-2}$. For all $c>1$, if
$\operatorname{pen}(m)=\frac{c M|m|}{L}\left(1+\sqrt{2 \kappa L_{m}}\right)^{2} \operatorname{avec} \tilde{M}=\sup _{I \in \mathrm{C}} \frac{N_{l}}{\mu(I)}$, then

$$
\mathbb{E}\left(\left\|s-\hat{s}_{\hat{m}}\right\|^{2}\right) \leq \square_{c} \inf _{m \in \mathcal{M}}\left[\left\|s-s_{m}\right\|^{2}+\frac{M|m|}{L}\left(1+L_{m}\right)\right]+\square_{c, \Sigma, M} \frac{1}{L},
$$

Oracle inequality for Poisson processes

 simplified in the case of piecewise constant models on a fine grid Γ.
Proposition (RB 2003)

Let $\left\{L_{m}, m \in \mathcal{M}\right\}$ tq $\sum_{m \in \mathcal{M}} e^{-L_{m}|m|} \leq \Sigma$ with $|\Gamma| \leq L(\ln L)^{-2}$. For all $c>1$, if
$\operatorname{pen}(m)=\frac{c M|m|}{L}\left(1+\sqrt{2 \kappa L_{m}}\right)^{2}$ avec $\tilde{M}=\sup _{\epsilon \in \Gamma} \frac{N_{l}}{\mu(I)}$, then
$\mathbb{E}\left(\left\|s-\hat{s}_{\hat{m}}\right\|^{2}\right) \leq \square_{c} \inf _{m \in \mathcal{M}}\left[\left\|s-s_{m}\right\|^{2}+\frac{M|m|}{L}\left(1+L_{m}\right)\right]+\square_{c, \Sigma, M} \frac{1}{L}$,
where $M=\sup _{I \in \Gamma} \frac{\int_{1} s(x) d x}{\mu(I)}$.

Oracle inequality for Poisson processes

 simplified in the case of piecewise constant models on a fine grid Γ.
Proposition (RB 2003)

Let $\left\{L_{m}, m \in \mathcal{M}\right\}$ tq $\sum_{m \in \mathcal{M}} e^{-L_{m}|m|} \leq \Sigma$ with $|\Gamma| \leq L(\ln L)^{-2}$. For all $c>1$, if
$\operatorname{pen}(m)=\frac{c \tilde{M}|m|}{L}\left(1+\sqrt{2 \kappa L_{m}}\right)^{2} \operatorname{avec} \tilde{M}=\sup _{I \in \Gamma} \frac{N_{I}}{\mu(I)}$, then
$\mathbb{E}\left(\left\|s-\hat{s}_{\hat{m}}\right\|^{2}\right) \leq \square_{c} \inf _{m \in \mathcal{M}}\left[\left\|s-s_{m}\right\|^{2}+\frac{M|m|}{L}\left(1+L_{m}\right)\right]+\square_{c, \Sigma, M} \frac{1}{L}$,
where $M=\sup _{I \in \Gamma} \frac{\int_{1} s(x) d x}{\mu(I)}$.
Here constants in the concentration inequalities are crucial \rightarrow penalty.

Counting processes with linear intensities

$$
\lambda(t)=\Psi_{s}(t)
$$

where Ψ.(.) known predictable linear transformation. Functional parameter s unknown.

Counting processes with linear intensities

$$
\lambda(t)=\psi_{s}(t)
$$

where Ψ.(.) known predictable linear transformation. Functional parameter s unknown.

- Poisson process on $\mathbb{R}: \Psi_{s}()=.L s($.$) with unknown function$ s.
- Processus de Hawkes :

$$
\Psi_{s}(t)^{(r)}=\lambda^{(r)}(t)=\nu_{r}+\sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) d N_{u}^{(\ell)}
$$

with $s=\left(\nu_{r}, h_{\ell}^{(r)}\right)_{\ell, r}$

Counting processes with linear intensities

$$
\lambda(t)=\psi_{s}(t)
$$

where Ψ.(.) known predictable linear transformation. Functional parameter s unknown.

- Poisson process on $\mathbb{R}: \Psi_{s}()=.L s($.$) with unknown function$ S.
- Processus de Hawkes :

$$
\Psi_{s}(t)^{(r)}=\lambda^{(r)}(t)=\nu_{r}+\sum_{\ell=1}^{M} \int_{-\infty}^{t-} h_{\ell}^{(r)}(t-u) d N_{u}^{(\ell)} .
$$

with $s=\left(\nu_{r}, h_{\ell}^{(r)}\right)_{\ell, r}$
Observation on $[0, T]$.

Least square contrast

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

Least square contrast

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

- taking the compensator, $\gamma(f) \simeq-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) \Psi_{s}(t) d t+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t$

Least square contrast

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

- taking the compensator, $\gamma(f) \simeq-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) \Psi_{s}(t) d t+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t=$ $\frac{1}{T} \int_{0}^{T} \Psi_{f-s}(t)^{2} d t-\frac{1}{T} \int_{0}^{T} \Psi_{s}(t)^{2} d t$.

Least square contrast

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

- taking the compensator, $\gamma(f) \simeq-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) \Psi_{s}(t) d t+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t=$ $\frac{1}{T} \int_{0}^{T} \Psi_{f-s}(t)^{2} d t-\frac{1}{T} \int_{0}^{T} \Psi_{s}(t)^{2} d t$. minimal when $\Psi_{f-s}(t)=0$ a.s., a.e. $\rightarrow f=s$.

Least square contrast

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

- taking the compensator, $\gamma(f) \simeq-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) \Psi_{s}(t) d t+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t=$ $\frac{1}{T} \int_{0}^{T} \Psi_{f-s}(t)^{2} d t-\frac{1}{T} \int_{0}^{T} \Psi_{s}(t)^{2} d t$.
minimal when $\Psi_{f-s}(t)=0$ a.s., a.e. $\rightarrow f=s$.
- In general, $\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t$ is random, true norm only with high probability.

Model selection and χ^{2}

- For each $S_{m}, \hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$

Model selection and χ^{2}

- For each $S_{m}, \hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$
- Family $\mathcal{M}+$ penalty and

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left\{\gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m)\right\} .
$$

Model selection and χ^{2}

- For each $S_{m}, \hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$
- Family $\mathcal{M}+$ penalty and

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left\{\gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m)\right\} .
$$

- The statistics to control is

$$
\chi^{2}(m)=\sum_{\lambda \in \Lambda_{m}}\left(\frac{1}{T} \int_{0}^{T} \Psi_{\varphi_{\lambda}}(t)\left(d N_{t}-\Psi_{s}(t) d t\right)\right)^{2}
$$

Model selection and χ^{2}

- For each $S_{m}, \hat{s}_{m}=\operatorname{argmin}_{f \in S_{m}} \gamma(f)$
- Family $\mathcal{M}+$ penalty and

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left\{\gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m)\right\} .
$$

- The statistics to control is

$$
\chi^{2}(m)=\sum_{\lambda \in \Lambda_{m}}\left(\frac{1}{T} \int_{0}^{T} \psi_{\varphi_{\lambda}}(t)\left(d N_{t}-\Psi_{s}(t) d t\right)\right)^{2}
$$

- Once again

$$
\chi(m)=\sup _{\|f\|=1, f \in S_{m}} \frac{1}{T} \int \Psi_{f}(t)\left(d N_{t}-\Psi_{s}(t) d t\right)
$$

"Talagrand" type inequality for general counting processes

Theorem (RB 2006)
Let $\lambda(t)$ be a.s integrable on $[0, T]$.

"Talagrand" type inequality for general counting processes

Theorem (RB 2006)

Let $\lambda(t)$ be a.s integrable on $[0, T]$.
Let $\left\{\left(H_{a, t}\right)_{t \geq 0}, a \in A\right\}$ be a countable family of predictable process

$$
\forall t \geq 0, \quad Z_{t}=\sup _{a \in A} \int_{0}^{t} H_{a, s}\left(d N_{s}-\lambda(s) d s\right) .
$$

"Talagrand" type inequality for general counting processes

Theorem (RB 2006)

Let $\lambda(t)$ be a.s integrable on $[0, T]$.
Let $\left\{\left(H_{a, t}\right)_{t \geq 0}, a \in A\right\}$ be a countable family of predictable process

$$
\forall t \geq 0, \quad Z_{t}=\sup _{a \in A} \int_{0}^{t} H_{a, s}\left(d N_{s}-\lambda(s) d s\right) .
$$

Then its compensator exists $\left(A_{t}\right)_{t \geq 0}$, it is positive and non decreasing and

$$
\forall 0 \leq t \leq T, \quad Z_{t}-A_{t}=\int_{0}^{t} \Delta Z(s)\left(d N_{s}-\lambda(s) d s\right),
$$

for a predictable $\Delta Z(s)$ st $\Delta Z(s) \leq \sup _{\mathrm{a} \in \mathrm{A}} H_{\mathrm{a}, \mathrm{s}}$.

"Talagrand" type inequality for general counting processes

Theorem (RB 2006)

Let $\lambda(t)$ be a.s integrable on $[0, T]$.
Let $\left\{\left(H_{a, t}\right)_{t \geq 0}, a \in A\right\}$ be a countable family of predictable process

$$
\forall t \geq 0, \quad Z_{t}=\sup _{a \in A} \int_{0}^{t} H_{a, s}\left(d N_{s}-\lambda(s) d s\right) .
$$

If the H_{a} have values in $[-b, b]$ and if $\int_{0}^{T} \sup _{a \in A} H_{a, s}^{2} \lambda(s) d s \leq v$ as, then for all $u>0$,

$$
\mathbb{P}\left(\sup _{[0, T]}\left(Z_{t}-A_{t}\right) \geq \sqrt{2 v u}+\frac{b u}{3}\right) \leq e^{-u} .
$$

And for the $\chi^{2} \ldots$

Let

$$
\mathcal{C}=\sum_{\lambda} \int_{0}^{T} \frac{\Psi_{\varphi_{\lambda}}(x)^{2}}{T^{2}} \lambda(x) d x
$$

with $\mathcal{C} \leq v$ et $\sum_{\lambda} \Psi_{\varphi_{\lambda}}(x)^{2} \leq b$ for all $x \in[0, T]$. Then for all $u>0$,

$$
\mathbb{P}(\chi(m) \geq \sqrt{\mathcal{C}}+3 \sqrt{2 v u}+b u) \leq 2 e^{-u}
$$

And for the $\chi^{2} \ldots$

Let

$$
\mathcal{C}=\sum_{\lambda} \int_{0}^{T} \frac{\Psi_{\varphi_{\lambda}}(x)^{2}}{T^{2}} \lambda(x) d x
$$

with $\mathcal{C} \leq v$ et $\sum_{\lambda} \Psi_{\varphi_{\lambda}}(x)^{2} \leq b$ for all $x \in[0, T]$. Then for all $u>0$,

$$
\mathbb{P}(\chi(m) \geq \sqrt{\mathcal{C}}+3 \sqrt{2 v u}+b u) \leq 2 e^{-u}
$$

- v is of the order of $D_{m} \neq$ Poisson case \rightarrow a "worse" oracle inequality (family of models to be handle are smaller)

And for the $\chi^{2} \ldots$

Let

$$
\mathcal{C}=\sum_{\lambda} \int_{0}^{T} \frac{\Psi_{\varphi_{\lambda}}(x)^{2}}{T^{2}} \lambda(x) d x
$$

with $\mathcal{C} \leq v$ et $\sum_{\lambda} \Psi_{\varphi_{\lambda}}(x)^{2} \leq b$ for all $x \in[0, T]$. Then for all $u>0$,

$$
\mathbb{P}(\chi(m) \geq \sqrt{\mathcal{C}}+3 \sqrt{2 v u}+b u) \leq 2 e^{-u} .
$$

- v is of the order of $D_{m} \neq$ Poisson case \rightarrow a "worse" oracle inequality (family of models to be handle are smaller)
- Improvement sometimes possible Baraud (2010) but need of an upper bound on $\sqrt{\mathcal{C}}$.

And for the $\chi^{2} \ldots$

Let

$$
\mathcal{C}=\sum_{\lambda} \int_{0}^{T} \frac{\Psi_{\varphi_{\lambda}}(x)^{2}}{T^{2}} \lambda(x) d x
$$

with $\mathcal{C} \leq v$ et $\sum_{\lambda} \Psi_{\varphi_{\lambda}}(x)^{2} \leq b$ for all $x \in[0, T]$. Then for all $u>0$,

$$
\mathbb{P}(\chi(m) \geq \sqrt{\mathcal{C}}+3 \sqrt{2 v u}+b u) \leq 2 e^{-u}
$$

- v is of the order of $D_{m} \neq$ Poisson case \rightarrow a "worse" oracle inequality (family of models to be handle are smaller)
- Improvement sometimes possible Baraud (2010) but need of an upper bound on $\sqrt{\mathcal{C}}$.
- Still λ inside, which is in general difficult to estimate \rightarrow usually assume known upper bound.

Concrete Problems due to the concentration...

- No theoretical access to a fully data-driven penalty.

Concrete Problems due to the concentration...

- No theoretical access to a fully data-driven penalty.
- Even in the Poisson case, variance upper bounded and then overestimation ... of the upper bound.

Concrete Problems due to the concentration...

- No theoretical access to a fully data-driven penalty.
- Even in the Poisson case, variance upper bounded and then overestimation ... of the upper bound.
- We would like to be closer to the true variance of \hat{s}_{m} and estimate it without bias.

Concrete Problems due to the concentration...

- No theoretical access to a fully data-driven penalty.
- Even in the Poisson case, variance upper bounded and then overestimation ... of the upper bound.
- We would like to be closer to the true variance of \hat{s}_{m} and estimate it without bias.
- Talagrand type inequalities lead us to estimate the supremum of the variances (Poisson) or the variance of the supremum

Poisson process and Thresholding

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$

Poisson process and Thresholding

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$

Poisson process and Thresholding

$\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})$

- Here there exists a large ONB $\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\chi^{2}(\hat{m})=\sum_{\lambda \in \hat{m}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-s(t) d t\right)\right)^{2}$

Poisson process and Thresholding

$\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\chi^{2}(\hat{m})=\sum_{\lambda \in \hat{m}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-s(t) d t\right)\right)^{2}$
- If \hat{m} better understood, not forced to control all the $\chi(m)$.

Poisson process and Thresholding

$\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\chi^{2}(\hat{m})=\sum_{\lambda \in \hat{m}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-s(t) d t\right)\right)^{2}$
- If \hat{m} better understood, not forced to control all the $\chi(m)$.
- If $\mathcal{M}=\{m \subset \Gamma\}$, where Γ finite subset of Λ and if $\operatorname{pen}(m)=\sum_{\lambda \in m} \eta_{\lambda}^{2}$ then

Poisson process and Thresholding

$\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\chi^{2}(\hat{m})=\sum_{\lambda \in \hat{m}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-s(t) d t\right)\right)^{2}$
- If \hat{m} better understood, not forced to control all the $\chi(m)$.
- If $\mathcal{M}=\{m \subset \Gamma\}$, where Γ finite subset of Λ and if $\operatorname{pen}(m)=\sum_{\lambda \in m} \eta_{\lambda}^{2}$ then

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left(\gamma\left(\hat{s}_{m}\right)+\operatorname{pen}(m)\right) .
$$

Poisson process and Thresholding

$\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\chi^{2}(\hat{m})=\sum_{\lambda \in \hat{m}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-s(t) d t\right)\right)^{2}$
- If \hat{m} better understood, not forced to control all the $\chi(m)$.
- If $\mathcal{M}=\{m \subset \Gamma\}$, where Γ finite subset of Λ and if $\operatorname{pen}(m)=\sum_{\lambda \in m} \eta_{\lambda}^{2}$ then

$$
\hat{m}=\left\{\lambda \in \Gamma /\left|\hat{\beta}_{\lambda}\right|>\eta_{\lambda}\right\} .
$$

Poisson process and Thresholding

$$
\left\|\hat{s}_{\hat{m}}-s\right\|^{2} \leq\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)-2 \delta\left(s_{m}-s_{\hat{m}}\right)+2 \delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)-\operatorname{pen}(\hat{m})
$$

- Here there exists a large $\operatorname{ONB}\left(\varphi_{\lambda}, \lambda \in \Lambda\right)$ and for $m \subset \Lambda$, $S_{m}=\operatorname{Span}\left(\varphi_{\lambda}, \lambda \in m\right)$
- $\beta_{\lambda}=\int \varphi_{\lambda} s, \hat{\beta}_{\lambda}=(1 / L) \int \varphi_{\lambda} d N$
- $\delta\left(\hat{s}_{\hat{m}}-s_{\hat{m}}\right)=\chi^{2}(\hat{m})=\sum_{\lambda \in \hat{m}}\left(\frac{1}{L} \int \varphi_{\lambda}(t)\left(d N_{t}-s(t) d t\right)\right)^{2}$
- If \hat{m} better understood, not forced to control all the $\chi(m)$.
- If $\mathcal{M}=\{m \subset \Gamma\}$, where Γ finite subset of Λ and if $\operatorname{pen}(m)=\sum_{\lambda \in m} \eta_{\lambda}^{2}$ then

$$
\hat{m}=\left\{\lambda \in \Gamma /\left|\hat{\beta}_{\lambda}\right|>\eta_{\lambda}\right\} .
$$

- $\chi^{2}(\hat{m})=\sum_{\lambda \in \Gamma}\left(\hat{\beta}_{\lambda}-\beta_{\lambda}\right)^{2} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right|>\eta_{\lambda}}$.

A general thresholding theorem

Theorem (RB Rivoirard 2010)
Let $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ st $\|\beta\|_{\ell_{2}}<\infty$ be unknown. Let us observe $\left(\hat{\beta}_{\lambda}\right)_{\lambda \in \Gamma}$, where $\Gamma \subset \Lambda$ and $\left(\eta_{\lambda}\right)_{\lambda \in \Gamma}$.

A general thresholding theorem

Theorem (RB Rivoirard 2010)
Let $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ st $\|\beta\|_{\ell_{2}}<\infty$ be unknown. Let us observe $\left(\hat{\beta}_{\lambda}\right)_{\lambda \in \Gamma}$, where $\Gamma \subset \Lambda$ and $\left(\eta_{\lambda}\right)_{\lambda \in \Gamma}$.
Let $\tilde{\beta}=\left(\hat{\beta}_{\lambda} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right| \geq \eta_{\lambda}} \mathbf{1}_{\lambda \in \Gamma}\right)_{\lambda \in \Lambda}$.

A general thresholding theorem

Theorem (RB Rivoirard 2010)

Let $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ st $\|\beta\|_{\ell_{2}}<\infty$ be unknown. Let us observe $\left(\hat{\beta}_{\lambda}\right)_{\lambda \in \Gamma}$, where $\Gamma \subset \Lambda$ and $\left(\eta_{\lambda}\right)_{\lambda \in \Gamma}$.
Let $\tilde{\beta}=\left(\hat{\beta}_{\lambda} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right| \geq \eta_{\lambda}} \mathbf{1}_{\lambda \in \Gamma}\right)_{\lambda \in \Lambda}$.
Let $\epsilon>0$ be fixed. If one finds $\left(F_{\lambda}\right)_{\lambda \in \Gamma}$ and $\kappa \in[0,1[, \omega \in[0,1]$,
$\zeta>0$ st

A general thresholding theorem

Theorem (RB Rivoirard 2010)

Let $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ st $\|\beta\|_{\ell_{2}}<\infty$ be unknown. Let us observe $\left(\hat{\beta}_{\lambda}\right)_{\lambda \in \Gamma}$, where $\Gamma \subset \Lambda$ and $\left(\eta_{\lambda}\right)_{\lambda \in \Gamma}$.
Let $\tilde{\beta}=\left(\hat{\beta}_{\lambda} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right| \geq \eta_{\lambda}} \mathbf{1}_{\lambda \in \Gamma}\right)_{\lambda \in \Lambda}$.
Let $\epsilon>0$ be fixed. If one finds $\left(F_{\lambda}\right)_{\lambda \in \Gamma}$ and $\kappa \in[0,1[, \omega \in[0,1]$,
$\zeta>0$ st
(A1) For all λ in $\Gamma, \mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|>\kappa \eta_{\lambda}\right) \leq \omega$.

A general thresholding theorem

Theorem (RB Rivoirard 2010)

Let $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ st $\|\beta\|_{\ell_{2}}<\infty$ be unknown. Let us observe $\left(\hat{\beta}_{\lambda}\right)_{\lambda \in \Gamma}$, where $\Gamma \subset \Lambda$ and $\left(\eta_{\lambda}\right)_{\lambda \in \Gamma}$.
Let $\tilde{\beta}=\left(\hat{\beta}_{\lambda} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right| \geq \eta_{\lambda}} \mathbf{1}_{\lambda \in \Gamma}\right)_{\lambda \in \Lambda}$.
Let $\epsilon>0$ be fixed. If one finds $\left(F_{\lambda}\right)_{\lambda \in \Gamma}$ and $\kappa \in[0,1[, \omega \in[0,1]$,
$\zeta>0$ st
(A1) For all λ in $\Gamma, \mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|>\kappa \eta_{\lambda}\right) \leq \omega$.
(A2) There exists $1<a, b<\infty$ with $\frac{1}{a}+\frac{1}{b}=1$ and $G>0$ st

$$
\lambda \in \Gamma
$$

$$
\left(\mathbb{E}\left[\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|^{2 a}\right]\right)^{\frac{1}{a}} \leq G \max \left(F_{\lambda}, F_{\lambda}^{\frac{1}{a}} \epsilon^{\frac{1}{b}}\right) .
$$

A general thresholding theorem

Theorem (RB Rivoirard 2010)

Let $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ st $\|\beta\|_{\ell_{2}}<\infty$ be unknown. Let us observe $\left(\hat{\beta}_{\lambda}\right)_{\lambda \in \Gamma}$, where $\Gamma \subset \Lambda$ and $\left(\eta_{\lambda}\right)_{\lambda \in \Gamma}$.
Let $\tilde{\beta}=\left(\hat{\beta}_{\lambda} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right| \geq \eta_{\lambda}} \mathbf{1}_{\lambda \in \Gamma}\right)_{\lambda \in \Lambda}$.
Let $\epsilon>0$ be fixed. If one finds $\left(F_{\lambda}\right)_{\lambda \in \Gamma}$ and $\kappa \in[0,1[, \omega \in[0,1]$,
$\zeta>0$ st
(A1) For all λ in $\Gamma, \mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|>\kappa \eta_{\lambda}\right) \leq \omega$.
(A2) There exists $1<a, b<\infty$ with $\frac{1}{a}+\frac{1}{b}=1$ and $G>0$ st

$$
\lambda \in \Gamma
$$

$$
\left(\mathbb{E}\left[\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|^{2 a}\right]\right)^{\frac{1}{a}} \leq G \max \left(F_{\lambda}, F_{\lambda}^{\frac{1}{a}} \epsilon^{\frac{1}{b}}\right) .
$$

(A3) there exists τ st for all λ in $\Gamma / F_{\lambda}<\tau \epsilon$,

$$
\mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|>\kappa \eta_{\lambda},\left|\hat{\beta}_{\lambda}\right|>\eta_{\lambda}\right) \leq F_{\lambda} \zeta .
$$

A general thresholding theorem (2)

Theorem (RB Rivoirard 2010)
Then under (A1), (A2), (A3), $\mathbb{E}\|\tilde{\beta}-\beta\|_{\ell_{2}}^{2} \leq$
$\square_{\kappa} \mathbb{E} \inf _{m \subset\ulcorner }\left\{\sum_{\lambda \notin m} \beta_{\lambda}^{2}+\sum_{\lambda \in m}\left(\hat{\beta}_{\lambda}-\beta_{\lambda}\right)^{2}+\sum_{\lambda \in m} \eta_{\lambda}^{2}\right\}$

$$
+\square_{\ldots}^{\prime} \sum_{\lambda \in \Gamma} F_{\lambda}
$$

$\leq \square \mathbb{E} \inf _{m \subset\ulcorner }\left[\left\|s-s_{m}\right\|^{2}+\operatorname{pen}(m)\right]+$ reminder term

Bernstein and variance estimation

For all $u>0$,

$$
\mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right| \geq \sqrt{2 u V_{\lambda}}+\frac{\left\|\varphi_{\lambda}\right\|_{\infty} u}{3 L}\right) \leq 2 e^{-u}
$$

with $V_{\lambda}=\frac{1}{L} \int \varphi_{\lambda}^{2}(x) s(x) d x$

Bernstein and variance estimation

For all $u>0$,

$$
\mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right| \geq \sqrt{2 u V_{\lambda}}+\frac{\left\|\varphi_{\lambda}\right\|_{\infty} u}{3 L}\right) \leq 2 e^{-u}
$$

with $V_{\lambda}=\frac{1}{L} \int \varphi_{\lambda}^{2}(x) s(x) d x$ and also

$$
\mathbb{P}\left(V_{\lambda} \geq \breve{V}_{\lambda}(u)\right) \leq e^{-u}
$$

with

$$
\breve{V}_{\lambda}(u)=\hat{V}_{\lambda}+\sqrt{2 \hat{V}_{\lambda} \frac{\left\|\varphi_{\lambda}\right\|_{\infty}^{2}}{L^{2}} u}+3 \frac{\left\|\varphi_{\lambda}\right\|_{\infty}^{2}}{n^{2}} u
$$

where $\hat{V}_{\lambda}=\frac{1}{L^{2}} \int \varphi_{\lambda}^{2}(x) d N_{x}$.

Bernstein and variance estimation

For all $u>0$,

$$
\mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right| \geq \sqrt{2 u V_{\lambda}}+\frac{\left\|\varphi_{\lambda}\right\|_{\infty} u}{3 L}\right) \leq 2 e^{-u}
$$

with $V_{\lambda}=\frac{1}{L} \int \varphi_{\lambda}^{2}(x) s(x) d x$ and also

$$
\mathbb{P}\left(V_{\lambda} \geq \breve{V}_{\lambda}(u)\right) \leq e^{-u}
$$

with

$$
\breve{V}_{\lambda}(u)=\hat{V}_{\lambda}+\sqrt{2 \hat{V}_{\lambda} \frac{\left\|\varphi_{\lambda}\right\|_{\infty}^{2}}{L^{2}} u}+3 \frac{\left\|\varphi_{\lambda}\right\|_{\infty}^{2}}{n^{2}} u
$$

where $\hat{V}_{\lambda}=\frac{1}{L^{2}} \int \varphi_{\lambda}^{2}(x) d N_{x}$.
Hence

$$
\mathbb{P}\left(\left|\hat{\beta}_{\lambda}-\beta_{\lambda}\right|>\eta_{\lambda}(u)\right) \leq 3 e^{-u}
$$

with $\eta_{\lambda}(u)=\sqrt{2 u \breve{V}_{\lambda}(u)}+\frac{\left\|\varphi_{\lambda}\right\|_{\infty} u}{3 L}$.

Lasso for other counting processes

Reformulation of the least-square contrast:

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

Lasso for other counting processes

Reformulation of the least-square contrast:

$$
\gamma(f)=-\frac{2}{T} \int_{0}^{T} \Psi_{f}(t) d N_{t}+\frac{1}{T} \int_{0}^{T} \Psi_{f}(t)^{2} d t
$$

Let Φ be a dictionary of \mathcal{H} and if $\mathbf{a} \in \mathbb{R}^{\Phi}$,

$$
f_{a}=\sum_{\varphi \in \Phi} a_{\varphi} \varphi .
$$

Then

$$
\gamma(f)=-2 \mathbf{b}^{*} \mathbf{a}+\mathbf{a}^{*} \mathbf{G a}
$$

where

- \mathbf{G} is a random observable matrix.
- \mathbf{b} is also a random observable vector.

Lasso criterion

Lasso criterion

$$
\hat{\mathbf{a}}=\operatorname{argmin}_{\mathbf{a} \in \mathbb{R}^{\Phi}}\left\{-2 \mathbf{b}^{*} \mathbf{a}+\mathbf{a}^{*} \mathbf{G a}+2 \mathbf{d}^{*}|\mathbf{a}|\right\}
$$

- The vector \mathbf{d}^{*} is not constant: it is random and depends on the index, same role as the threshold η

Lasso criterion

Lasso criterion

$$
\hat{\mathbf{a}}=\operatorname{argmin}_{\mathbf{a} \in \mathbb{R}^{\Phi}}\left\{-2 \mathbf{b}^{*} \mathbf{a}+\mathbf{a}^{*} \mathbf{G} \mathbf{a}+2 \mathbf{d}^{*}|\mathbf{a}|\right\}
$$

- The vector \mathbf{d}^{*} is not constant: it is random and depends on the index, same role as the threshold η
- \rightarrow data-driven penalty (see also Bertin, Le Pennec, Rivoirard (2011) in the density setting)

Lasso criterion

Lasso criterion

$$
\hat{\mathbf{a}}=\operatorname{argmin}_{\mathbf{a} \in \mathbb{R}^{\Phi}}\left\{-2 \mathbf{b}^{*} \mathbf{a}+\mathbf{a}^{*} \mathbf{G} \mathbf{a}+2 \mathbf{d}^{*}|\mathbf{a}|\right\}
$$

- The vector \mathbf{d}^{*} is not constant: it is random and depends on the index, same role as the threshold η
- \rightarrow data-driven penalty (see also Bertin, Le Pennec, Rivoirard (2011) in the density setting)
- Oracle inequality with "high" probability possible....

One of the main probabilistic ingredients

Bernstein type inequality for counting processes
Let $\left(H_{s}\right)_{s \geq 0}$ be a predictable process and
$M_{t}=\int_{0}^{t} H_{s}\left(d N_{s}-\lambda(s) d s\right)$.

One of the main probabilistic ingredients

Bernstein type inequality for counting processes
Let $\left(H_{s}\right)_{s \geq 0}$ be a predictable process and $M_{t}=\int_{0}^{t} H_{s}\left(d N_{s}-\lambda(s) d s\right)$. Let $b>0$ and $v>w>0$.

One of the main probabilistic ingredients

Bernstein type inequality for counting processes
Let $\left(H_{s}\right)_{s \geq 0}$ be a predictable process and
$M_{t}=\int_{0}^{t} H_{s}\left(d N_{s}-\lambda(s) d s\right)$. Let $b>0$ and $v>w>0$.
For all $x, \mu>0$ such that $\mu>\phi(\mu)$, let
$\hat{V}_{\tau}^{\mu}=\frac{\mu}{\mu-\phi(\mu)} \int_{0}^{\tau} H_{s}^{2} d N_{s}+\frac{b^{2} x}{\mu-\phi(\mu)}$, where $\phi(u)=\exp (u)-u-1$.

One of the main probabilistic ingredients

Bernstein type inequality for counting processes

Let $\left(H_{s}\right)_{s \geq 0}$ be a predictable process and $M_{t}=\int_{0}^{t} H_{s}\left(d N_{s}-\lambda(s) d s\right)$. Let $b>0$ and $v>w>0$.
For all $x, \mu>0$ such that $\mu>\phi(\mu)$, let
$\hat{V}_{\tau}^{\mu}=\frac{\mu}{\mu-\phi(\mu)} \int_{0}^{\tau} H_{s}^{2} d N_{s}+\frac{b^{2} x}{\mu-\phi(\mu)}$, where $\phi(u)=\exp (u)-u-1$.
Then for every stopping time τ and every $\varepsilon>0$

$$
\begin{gathered}
\mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon) \hat{V}_{\tau}^{\mu} x}+b x / 3, \quad w \leq \hat{V}_{\tau}^{\mu} \leq v \text { and } \sup _{s \in[0, \tau]}\left|H_{s}\right| \leq b\right) \\
\leq 2 \frac{\log (v / w)}{\log (1+\varepsilon)} e^{-x} .
\end{gathered}
$$

One of the main probabilistic ingredients

Bernstein type inequality for counting processes
Let $\left(H_{s}\right)_{s \geq 0}$ be a predictable process and
$M_{t}=\int_{0}^{t} H_{s}\left(d N_{s}-\lambda(s) d s\right)$. Let $b>0$ and $v>w>0$.
For all $x, \mu>0$ such that $\mu>\phi(\mu)$, let
$\hat{V}_{\tau}^{\mu}=\frac{\mu}{\mu-\phi(\mu)} \int_{0}^{\tau} H_{s}^{2} d N_{s}+\frac{b^{2} x}{\mu-\phi(\mu)}$, where $\phi(u)=\exp (u)-u-1$.
Then for every stopping time τ and every $\varepsilon>0$

$$
\begin{gathered}
\mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon) \hat{V}_{\tau}^{\mu} x}+b x / 3, \quad w \leq \hat{V}_{\tau}^{\mu} \leq v \text { and } \sup _{s \in[0, \tau]}\left|H_{s}\right| \leq b\right) \\
\leq 2 \frac{\log (v / w)}{\log (1+\varepsilon)} e^{-x} .
\end{gathered}
$$

We apply it to $\int_{0}^{T} \Psi_{\varphi}(t)\left[d N_{t}-\lambda(t) d t\right]$. Then \mathbf{d} is given by the right hand-side.

One of the main probabilistic ingredients

Bernstein type inequality for counting processes

Let $\left(H_{s}\right)_{s \geq 0}$ be a predictable process and
$M_{t}=\int_{0}^{t} H_{s}\left(d N_{s}-\lambda(s) d s\right)$. Let $b>0$ and $v>w>0$.
For all $x, \mu>0$ such that $\mu>\phi(\mu)$, let
$\hat{V}_{\tau}^{\mu}=\frac{\mu}{\mu-\phi(\mu)} \int_{0}^{\tau} H_{s}^{2} d N_{s}+\frac{b^{2} x}{\mu-\phi(\mu)}$, where $\phi(u)=\exp (u)-u-1$.
Then for every stopping time τ and every $\varepsilon>0$

$$
\begin{gathered}
\mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon) \hat{V}_{\tau}^{\mu} x}+b x / 3, \quad w \leq \hat{V}_{\tau}^{\mu} \leq v \text { and } \sup _{s \in[0, \tau]}\left|H_{s}\right| \leq b\right) \\
\leq 2 \frac{\log (v / w)}{\log (1+\varepsilon)} e^{-x} .
\end{gathered}
$$

We apply it to $\int_{0}^{T} \Psi_{\varphi}(t)\left[d N_{t}-\lambda(t) d t\right]$. Then \mathbf{d} is given by the right hand-side.
For more details about the Lasso procedure, see V. Rivoirard's talk.

Sketch of proof

- $E_{t}=\exp \left(\xi \int_{0}^{t} H_{s} d(N-\Lambda)_{s}-\int_{0}^{t} \phi\left(\xi H_{s}\right) \lambda(s) d s\right)$ is a supermartingale.

Sketch of proof

- $E_{t}=\exp \left(\xi \int_{0}^{t} H_{s} d(N-\Lambda)_{s}-\int_{0}^{t} \phi\left(\xi H_{s}\right) \lambda(s) d s\right)$ is a supermartingale.
- For all $\xi \in(0,3)$,
$\mathbb{P}\left(M_{\tau} \geq \frac{\xi}{2(1-\xi / 3)} \int_{0}^{\tau} H_{s}^{2} \lambda(s) d s+\xi^{-1} x\right.$ and $\left.\sup _{s \leq \tau}\left|H_{s}\right| \leq 1\right)$
$\leq e^{-x}$

Sketch of proof

- $E_{t}=\exp \left(\xi \int_{0}^{t} H_{s} d(N-\Lambda)_{s}-\int_{0}^{t} \phi\left(\xi H_{s}\right) \lambda(s) d s\right)$ is a supermartingale.
- For all $\xi \in(0,3)$,
$\mathbb{P}\left(M_{\tau} \geq \frac{\xi}{2(1-\xi / 3)} \int_{0}^{\tau} H_{s}^{2} \lambda(s) d s+\xi^{-1} x\right.$ and $\left.\sup _{s \leq \tau}\left|H_{s}\right| \leq 1\right)$
$\leq e^{-x}$
-

$\mathbb{P}\left(M_{\tau} \geq \frac{\xi}{2(1-\xi / 3)} v+\xi^{-1} x\right.$ and $\int_{0}^{\tau} H_{s}^{2} \lambda(s) d s \leq v$ and $\left.\sup _{s \leq \tau}\left|H_{s}\right| \leq 1\right)$ $\leq e^{-x}$.

Sketch of proof (2)

Lemma

Let a, b and x be positive constants and let us consider on $(0,1 / b), g(\xi)=\frac{a \xi}{(1-b \xi)}+\frac{x}{\xi}$. Then $\min _{\xi \in(0,1 / b)} g(\xi)=2 \sqrt{a x}+b x$ and the minimum is achieved in $\xi(a, b, x)=\frac{x b-\sqrt{a x}}{x b^{2}-a}$.

Sketch of proof (2)

Lemma

Let a, b and x be positive constants and let us consider on $(0,1 / b), g(\xi)=\frac{a \xi}{(1-b \xi)}+\frac{x}{\xi}$. Then $\min _{\xi \in(0,1 / b)} g(\xi)=2 \sqrt{a x}+b x$ and the minimum is achieved in $\xi(a, b, x)=\frac{x b-\sqrt{a x}}{x b^{2}-a}$.

- Then with $\xi(v / 2,1 / 3, x)$,

$$
\begin{aligned}
& \mathbb{P}\left(M_{\tau} \geq \sqrt{2 v x}+x / 3 \text { and } \int_{0}^{\tau} H_{s}^{2} \lambda(s) d s \leq v \text { and } \sup _{s \leq \tau}\left|H_{s}\right| \leq 1\right) \\
& \leq e^{-x} .
\end{aligned}
$$

Sketch of proof (2)

Lemma

Let a, b and x be positive constants and let us consider on $(0,1 / b), g(\xi)=\frac{a \xi}{(1-b \xi)}+\frac{x}{\xi}$. Then $\min _{\xi \in(0,1 / b)} g(\xi)=2 \sqrt{a x}+b x$ and the minimum is achieved in $\xi(a, b, x)=\frac{x b-\sqrt{a x}}{x b^{2}-a}$.

- Then with $\xi(v / 2,1 / 3, x)$,

$$
\begin{aligned}
& \mathbb{P}\left(M_{\tau} \geq \sqrt{2 v x}+x / 3 \text { and } \int_{0}^{\tau} H_{s}^{2} \lambda(s) d s \leq v \text { and } \sup _{s \leq \tau}\left|H_{s}\right| \leq 1\right) \\
& \leq e^{-x} .
\end{aligned}
$$

- But also

$$
\begin{aligned}
& \mathbb{P}\left(M_{\tau} \geq \sqrt{2(1+\varepsilon) \int_{0}^{\tau} H_{s}^{2} \lambda(s) d s x}+x / 3\right. \text { and } \\
& \left.\quad v(1+\varepsilon)^{-1} \leq \int_{0}^{\tau} H_{s}^{2} \lambda(s) d s \leq v \text { and } \sup _{s \leq \tau}\left|H_{s}\right| \leq 1\right) \leq e^{-x} .
\end{aligned}
$$

- Peeling + plug in ...

Conclusion

- If the concentration inequalities for the test statistics or the χ^{2} statistics are "tight" (dimension free) enough, possibility to aggregate / select in a large/complex family and hence be able to adapt to "ugly" situations.

Conclusion

- If the concentration inequalities for the test statistics or the χ^{2} statistics are "tight" (dimension free) enough, possibility to aggregate / select in a large/complex family and hence be able to adapt to "ugly" situations.
- For estimation, also need of
- known, sharp constants

Conclusion

- If the concentration inequalities for the test statistics or the χ^{2} statistics are "tight" (dimension free) enough, possibility to aggregate / select in a large/complex family and hence be able to adapt to "ugly" situations.
- For estimation, also need of
- known, sharp constants
- observable quantities, eventually random ...

Conclusion

- If the concentration inequalities for the test statistics or the χ^{2} statistics are "tight" (dimension free) enough, possibility to aggregate / select in a large/complex family and hence be able to adapt to "ugly" situations.
- For estimation, also need of
- known, sharp constants
- observable quantities, eventually random ...
- eventually change of method (threshold, Lasso)...

Conclusion

- If the concentration inequalities for the test statistics or the χ^{2} statistics are "tight" (dimension free) enough, possibility to aggregate / select in a large/complex family and hence be able to adapt to "ugly" situations.
- For estimation, also need of
- known, sharp constants
- observable quantities, eventually random ...
- eventually change of method (threshold, Lasso)...
- Future work: multiple testing, group Lasso ???

References

Adamczak, R. Moment Inequalities for U-statistics. Ann. Probab. 34 (6), 2288-2314 (2006).
Giné, E., Latala, R., Zinn, J. Exponential and Moment Inequalities for U-statistics. High Dimensional Probability II - Progress in Probability, Birkhaüser, 13-38 (2000).

Houdré, C., Reynaud-Bouret, P. Exponential inequalities, with constants, for U-statistics of order two. Stochastic inequalities and applications, Progr. Probab., 56 Birkhäuser, Basel, 55-69 (2003).

Reynaud-Bouret, P. Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probab. Theory Related Fields, 126 (1), 103-153 (2003).

Reynaud-Bouret, P. Compensator and exponential inequalities for some suprema of counting processes. Statistics and Probability Letters, 76(14), 1514-1521 (2006).

Reynaud-Bouret, P. Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli, 12(4), 633-661 (2006).

Reynaud-Bouret, P., Schbath, S. Adaptive estimation for Hawkes processes; application to genome analysis. Ann. Statist., 38(5), 2781-2822 (2010).

Reynaud-Bouret, P., Rivoirard, V. Near optimal thresholding estimation of a Poisson intensity on the real line. Electronic Journal of Statistics, 4, 172-238 (2010).

Hansen, N.R, Reynaud-Bouret, P., Rivoirard, V. Lasso and probabilistic inequalities for multivariate point processes Arxiv (2012).

Thank you!

