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Motivations



Example 1 - Bipartite ranking problem

Observations: (Xi ,Yi ) ∈ Rd × {−1,+1}, i = 1, . . . , n

Infer an order over Rd where the (+1)s are above (-1) instances

infer a scoring rule s : Rd → R from data with binary feedback



Example 1 (c’ed) - Evaluation metric: the ROC Curve

ROC curve of scoring rule s : Rd → R

t ∈ R 7→ ( P− {s(X ) ≥ t}︸ ︷︷ ︸
rate of false alarms

, P+ {s(X ) ≥ t}︸ ︷︷ ︸
rate of hits

)

where P+ = L(X | Y = +1) and P− = L(X | Y = −1)



Example 2 - Two-sample homogeneity test in Rd

X+
k = {X+

1 , . . . ,X
+
k } i.i.d. with distribution P+ over Rd

X−m = {X−1 , . . . ,X−m } i.i.d. with distribution P− over Rd

Assume the two samples are independent

Question: homogeneity testing with null assumption

H0 : P+ = P−



Example 2 (c’ed) - Connection with scoring

Null assumption
H0 : P+ = P−

Proposed strategy for d > 1: From multivariate homogeneity test to a
collection of univariate tests

I Consider S a class of scoring rules s : Rd → R
I Let

Ps,+ = L(s(X ) | Y = +1) and Ps,− = L(s(X ) | Y = −1)

I For each s ∈ S, consider homogeneity tests with null assumption

Hs,0 : Ps,+ = Ps,−

I Reject H0 if there exists an s ∈ S such that Hs,0 is rejected

Idea: find the most discriminative scoring rule s based on pretesting
data



Example 2 (c’ed) - Test statistic based on ROC curve

The case Ps,+ = Ps,− corresponds to the first diagonal (d ′ = 0)

Use Wilcoxon rank statistics to assess discrepancy from the first
diagonal



Main issues

Optimal elements

Variations along Example 1

I Performance measures - summaries of ROC curves
I Nature of feedback Y
I Nature of sampling scheme (pointwise, pairwise, listwise)

Empirical Risk Minimization principles and statistical theory

I conditions for uniform convergence
I consistency of M-estimators
I (fast) rates of convergence?

Design of efficient algorithms

Meta-algorithms and aggregation principle



Optimality for bipartite ranking



ROC optimality = Neyman-Pearson theory

ROC curve = Power curve of the test statistic s(X ) when testing

H0 : X ∼ P− against H1 : X ∼ P+

Likelihood ratio φ(X ) yields a uniformly most powerful test

φ(X ) =
dP+

dP−
(X ) =

1− p

p
× η(X )

1− η(X )
.

with p = P{Y = +1}, η(x) = P{Y = 1+ | X = x}

Set:
S∗ = {T ◦ η | T : [0, 1]→ R strictly increasing} ,

the class of ROC-optimal scoring rules



Representation of optimal scoring rules

Note that if U ∼ U([0, 1])

∀x ∈ X , η(x) = E (I{η(x) > U})

If s∗ ∈ S∗, then:

∀x ∈ X , s∗(x) = c + E (w(V ) · I{η(x) > V })

for some:
I c ∈ R,
I V continuous random variable in [0, 1]
I w : [0, 1]→ R+ integrable.

Optimal ranking amounts to recovering the level sets of η:

{x : η(x) > q}q∈(0,1)

Easier problem than regression function estimation!



Optimality for K -partite ranking



Ranking data with ordinal labels

Observations: (Xi ,Yi ) ∈ Rd × {1, 2, 3}, i = 1, . . . , n



Optimal elements (K > 2)

Consider feedback Y on vector X among K ordered classes

Posterior distribution: ∀j ∈ {1, . . . ,K} , ∀x ∈ Rd ,

ηj(x) = P(Y = j | X = x)

An optimal element s∗ satisfies the condition:

∀l < k , ∃Tl ,k strictly increasing such that:

s∗ = Tl ,k ◦
(
ηk
ηl

)
(optimality w.r.t. all bipartite subproblems)

Equivalent to ROC-optimality in terms of ROC surface



Necessary and sufficient condition for optimality

Requirement when scoring ordinal data with K > 2

Assumption. For any 1 ≤ l < k ≤ K − 1, we have: for x , x ′,

ηk+1

ηk
(x) <

ηk+1

ηk
(x ′)⇒ ηl+1

ηl
(x) <

ηl+1

ηl
(x ′)

In particular, under the assumption, the regression function

η(x) = E(Y | X = x) =
K∑

k=1

kηk(x)

is optimal.



Example and counterexample

Here d = 1, K = 3
with GREEN = class 1 / BLUE = class 2 / RED = class 3

(a) Assumption satisfied
m1 < m2 < m3, σ21 = σ22 = σ23 = 1

(b) Assumption not satisfied
m1 < m2 < m3, σ21 = σ22 = 1,

σ23 = 2



Empirical summaries of ROC curve



Performance measures in the bipartite case (K = 2)

Curves:

I ROC curve
I (Precision-Recall curve)

Summaries (global vs. best
scores):

I AUC (global measure)
I Partial AUC

(Dodd and Pepe ’03)
I Local AUC

(Clémençon and Vayatis ’07)
ROC curves.
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(Clémençon and Vayatis ’07)
ROC curves.



Performance measures in the bipartite case (K = 2)

Curves:

I ROC curve
I (Precision-Recall curve)

Summaries (global vs. best
scores):

I AUC (global measure)
I Partial AUC

(Dodd and Pepe ’03)
I Local AUC
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Performance measures in the bipartite case (K = 2)

Curves:

I ROC curve
I (Precision-Recall curve)

Summaries (global vs. best
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I AUC (global measure)
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(Dodd and Pepe ’03)
I Local AUC
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Performance measures in the bipartite case (K = 2)

Curves:

I ROC curve
I (Precision-Recall curve)

Summaries (global vs. best
scores):

I AUC (global measure)
I Partial AUC

(Dodd and Pepe ’03)
I Local AUC

(Clémençon and Vayatis ’07)
Local AUC.



Case 1 - Area Under an ROC Curve (AUC)

For any scoring function s, define the AUC as:

AUC(s) = P{s(X−) < s(X+)}

where X+ ∼ P+ and X− ∼ P− are independent

Empirical AUC = U-statistic (Mann-Whitney)

ÂUC(s) =
1

km

k∑
i=1

m∑
j=1

I{(s(X−j ) < s(X+
i )}

Connection to rank statistics (Wilcoxon):

kmÂUC(s) + k(k + 1)/2 =
k∑

i=1

Rank(s(X+
i ))



Case (2-a): Learning-to-rank criteria

Average precision:

Ŵ (s) =
1

k

k∑
i=1

1

n + 1− Rank(s(X+
i ))

The top-@u%

Ŵ (s) =
k∑

i=1

I{Rank(s(X+
i ))/(n + 1) > u}

Discounted Cumulative Gain

Ŵ (s) =
k∑

i=1

1

log2(Rank(s(X+
i )) + 1)



Case (2 -b): Generic setup = Linear rank statistics

W -ranking functional

Ŵk,m(s) =
k∑

i=1

φ

(
Rank(s(X+

i ))

k + m + 1

)
, ∀s ∈ S.

Score-generating function (SGF) φ : [0, 1]→ [0, 1] nondecreasing

I φ(x) = x ⇒ empirical AUC
I φ(x) = x I{x ≥ 1− u} ⇒ (empirical) Local AUC
I φ(x) = xp, p > 1 ⇒ p-norm push
I φ(x) = c ((n + 1) x) · I{x≥k/(n+1)} ⇒ DCG
I smooth φ

(’RankBoost’ by Freund et al. - JMLR, 2003)(Agarwal et al. - JMLR,
2005) (CLV - COLT, 2005 & AoS, 2008)(CV - JMLR, 2007) (Rudin -
JMLR, 2006) (Cossock and Zhang - COLT 2006)(CV - NIPS, 2008)



Rates of convergence for
M-estimation

-
Main technical arguments



Baseline - ERM in statistical learning theory (1)

ERM with target criterion L(s) = E`(s,Z ) and ` loss function

ŝn = argmin
s∈S

L̂n(s) :=
1

n

n∑
i=1

`(s,Zi )

with Zi = (Xi ,Yi ) i.i.d. and S collection of candidate decision rules

Second-order analysis: Talagrand’s concentration inequality

L(ŝn)− inf
s∈S

L(g) ≤ 2E
{

sup
s∈S
|L̂n(s)− L(s)|

}
+ . . .

. . .

√
2 (sups∈S τ(s)) log(1/δ)

n
+ c

log(1/δ)

n

where τ(s) is a variance term, with probability at least 1− δ



Baseline - ERM in statistical learning theory (2)

Brick 1 - Complexity control, e.g. Vapnik-Chervonenkis inequality:

E
{

sup
s∈S
|L̂n(s)− L(s)|

}
≤ c

√
V

n

where V is the VC dimension of the class S

Brick 2- Variance control assumption with α ∈ (0, 1], L∗ = inf L

τ(s) ≤ C (L(s)− L∗)α , ∀s

⇒ Fast rates of convergence (Mammen-Tsybakov): excess risk in
n−1/(2−α)



Additional ingredient: projection argument

Z1, . . . ,Zn independent random variables

T = T (Z1, . . . ,Zn) be a square integrable statistic

Hájek projection

T̂ =
n∑

i=1

E[T | Zi ]− (n − 1)E(T )

We have:
E[T̂ ] = E[T ]

and

E[(T̂ − T )2] = E[(T − E[T ])2]− E[(T̂ − E[T̂ ])2]



Structure of U-Statistics - Hoeffding’s decomposition

General definition of a U-statistic: Z1, ...,Zn i.i.d. r.v., f kernel

Un(f ) =
1

n(n − 1)

∑
i 6=j

f (Zi ,Zj)

Hoeffding’s decomposition

Un(f ) = E(Un(f )) + 2Tn(f ) + Wn(f )

where

I Tn(f ) =
1

n

n∑
i=1

h(Zi ) ( empirical average of i.i.d. )

I h(z) = Ef (Z1, z)

I Wn(f ) = degenerate U-statistic (remainder term)

Degenerate U-statistic Wn with kernel h̃ is such that:

E(h̃(Z1,Z2) | Z1) = 0 a.s.



Main results



In this talk

1 AUC maximization - U-statistic case

2 Finding the best - Signed rank statistic case (with non-smooth SGF)

3 Maximizing general ranking criteria - the case of smooth SGF



Main results
-

1. The U-Statistic case



Bipartite ranking as pairwise classification

Pairwise classification error L(s)

L(s) = P{(Y − Y ′) · (s(X )− s(X ′)) < 0}

Ranking error and AUC:

AUC(s) = 1− 1

2p(1− p)
L(s)

Maximization of AUC = Minimization of pairwise classification error



Empirical Ranking Risk Minimization

Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

Empirical criterion for ranking:

Ln(s) =
1

n(n − 1)

∑
i 6=j

I{(Yi − Yj) · (s(Xi )− s(Xj)) < 0}

M-estimator over a class S of scoring rules

ŝn = argmin
s∈S

Ln(s)

Ln(s) is a U-statistic



The U-Statistic case

Sampling of Zi = (Xi ,Yi ) i.i.d. over Rd × {−1,+1}

U-process indexed by scoring rule s ∈ S

Ûn(s)− U(s) =
1

n(n − 1)

∑
i<j

qs(Zi ,Zj),

Kernel:

qs(z , z ′) = I{(y − y ′) · (s(x)− s(x ′)) < 0} − I{(y − y ′) · (s∗(x)− s∗(x ′)) < 0}

Key quantity: take Z and Z ′ i.i.d.

hs(z) = E{qs(z ,Z ′)} − E{qs(Z ,Z ′)}



Insights for rates-of-convergence results

Leading term Tn is an empirical process

I handled by Talagrand’s concentration inequality

I involves ”standard” complexity measures:

⇒ Variance control involves the function h

Exponential inequality for degenerate U-processes

I VC classes - exponential inequality by Arcones and Giné (AoP1993)

I general case - a new moment inequality

⇒ additional complexity measures



Fast Rates - VC Case

Theorem

Assume we have:

the class S of scoring rules is a VC major class with dimension V

for all s ∈ S,

Var(hs(Z )) ≤ c (U(s)− U∗)α (V)

with some constants c > 0 and α ∈ [0, 1].

Then, with probability larger than 1− δ:

U(ŝn)− U∗ ≤ 2

(
inf
s∈S

U(s)− U∗
)

+ C

(
V log(n/δ)

n

)1/(2−α)



Margin condition - Bipartite Ranking

Question: Sufficient condition for Assumption (V)

∀s ∈ S, Var(hs(Z )) ≤ c (U(s)− U∗)α ?

Wich assumptions on η(x) = P{Y = 1 | X = x} ?

Noise Assumption (NA)
There exist constants c > 0 and α ∈ [0, 1] such that :

∀x ∈ X , E(|η(x)− η(X )|−α) ≤ c .

Sufficient condition for (NA) with α < 1

η(X ) absolutely continuous on [0, 1] with bounded density



Remainder Term

Degenerate U-process

Consider q̃s a class of degenerate kernels, indexed by S, and

W̃n = sup
s∈S

∣∣∣∣∣∣
∑
i ,j

q̃s(Zi ,Zj)

∣∣∣∣∣∣



Additional Complexity Measures

ε1, . . . , εn i.i.d. Rademacher random variables

Complexity measures:

(1) Zε = sup
s∈S

∣∣∣∣∣∣
∑
i ,j

εiεj q̃s(Zi ,Zj)

∣∣∣∣∣∣
(2) Uε = sup

s∈S
sup

α:‖α‖2≤1

∑
i ,j

εiαj q̃s(Zi ,Zj)

(3) Mε = sup
s∈S

max
k=1...n

∣∣∣∣∣
n∑

i=1

εi q̃s(Zi ,Zk)

∣∣∣∣∣



Moment Inequality

Theorem

If W̃n is a degenerate U-process, then there exists a universal constant
C > 0 such that for all n and q ≥ 2,(

EW̃ q
n

)1/q
≤ C

(
EZε + q1/2EUε + q(EMε + n) + q3/2n1/2 + q2

)

Main tools: symmetrization, decoupling and concentration inequalities

Related work: Adamczak (AoP, 2006), Arcones and Giné (AoP,
1993), Giné, Latala and Zinn (HDP II, 2000), Houdré and
Reynaud-Bouret (SIA, 2003), Major (PTRF, 2006)



Control of the Degenerate Part

Corollary

With probability 1− δ,

W̃n ≤ C

(
EZε
n2

+
EUε

√
log(1/δ)

n2
+

EMε log(1/δ)

n2
+

log(1/δ)

n

)

VC case

EZε ≤ CnV , EUε ≤ Cn
√
V , EεMε ≤ C

√
Vn

Hence, with probability 1− δ
W̃n ≤

1

n
(V + log(1/δ))



Main results
-

2. Finding the best



Finding the best

Denote by F−1s (1− u) the (1− u)-quantile of s(X )

Take sets of the form:

Cs,u = {x ∈ Rd | s(x) > F−1s (1− u)}

where s real-valued scoring rule

Empirical risk:

Ŵn(s) =
1

n

n∑
i=1

I{Yi · (s(Xi )− F̂−1s (1− u)) < 0}.

Conditions for consistency and (fast) rates:
I class of scoring functions neither too flat nor too steep
I behavior of η around F−1η (1− u)



Typical scoring functions over the real line

Left and right derivatives uniformly bounded over the class S



Signed rank statistics

Take Z1, . . . ,Zn i.i.d.

Φ : [0, 1]→ [0, 1] (score generating function)

R+
i = rank(|Zi |)

Definition

The statistic
n∑

i=1

Φ

(
R+
i

n + 1

)
sgn(Zi )

is a linear signed rank statistic.



Structure of the empirical risk

Notations:

K (s, u) = E
(
Y I{s(X ) ≤ F−1s (1− u)}

)
K̂n(s, u) =

1

n

n∑
i=1

Yi I{s(Xi ) ≤ F̂−1s (1− u)}

We have:

W (s) = 1− p + K (s, u)

Ŵn(s) =
m

n
+ K̂n(s, u) where m =

∑n
i=1 I{Yi = −1}

Observe
For fixed s and u, the statistic K̂n(s, u) is a linear signed rank statistic.



Koul’s argument - Hoeffding’s-type decomposition

Notations:

Zn(s, u) =
1

n

n∑
i=1

(
Yi − K ′(s, u)

)
I{s(Xi ) ≤ F−1s (1−u)}−K (s, u)+uK ′(s, u) ,

where K ′(s, u) = K ′u(s, u).

Proposition

We have, for all s and u ∈ [0, 1]:

K̂n(s, u) = K (s, u) + Zn(s, u) + Λn(s) .

with
Λn(s) = OP(n−1) as n→∞ .



Rates of convergence

Under VC major class assumption, regular rate of the order n−1/2

Under margin condition:

⇒ Fast rate of the order n−2/3

Question: weaker assumptions? Faster rates? Lower bounds?



Main results
-

3. Smooth case



Smooth case

Consider W -ranking functional with φ twice continuously
differentiable on [0, 1]

Ŵk,m(s) =
k∑

i=1

φ

(
Rank(s(X+

i ))

k + m + 1

)
, ∀s ∈ S.

Set F+
s (resp. F−s ) the cdf of s(X+) (resp. s(X−))

We set Φs(x) = φ(F+
s (s(x))) + p

∫ +∞
s(x) φ

′(F+
s (u))dF−s (u) for all

x ∈ Rd .

Let S be a VC major class of functions. Then, we have: ∀s ∈ S,

Ŵk,m(s) = V̂k(s) + R̂k,m(s),

where

V̂k,m(s) =
k∑

i=1

Φs(X+
i )

and R̂n(s) = OP(1) as n→∞ uniformly over s ∈ S .



Open problems

1 U-statistic case: Fast rates for convex surrogate loss functions?

2 Finding the best instances: Beyond the n−2/3-rate?

3 Smooth case: Fast rates?

And beyond...

Generic arguments for R-processes?

General complexity measures for the control of R-processes?

(Too) Many other questions left...


