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Compressed Sensing

It is a young field on the crossroads of:

Signal processing

Probability

Information theory

Statistics

Geometric functional analysis

This talk: a very incomplete picture.
Emphasis on probabilistic, geometric insights.



Sampling

Problem: Recover a signal x from a sample of m linear measurements

f1(x), . . . , fm(x).

Example: fi are point evaluation functionals at random locations.



Sampling

Unknown signal x ∈ Rn.

Take m linear samples/measurements y = Ax ∈ Rm.

Here A is a known measurement matrix, the sampling device.

Goal: recover x from y .



Goal: recover x from y .

If m ≥ n, the problem is well-posed, trivial: x = A−1y .

If m < n, the problem is ill-posed, recovery impossible due to ker(A).

Compressed sensing is seeking recovery strategies in the regime m� n.
[Donoho, Candes-Tao, . . . 2004+]



Compressed sensing: recover signal x ∈ Rn from y = Ax ∈ Rm in the regime m� n.

Example:

x = image, y = sample of m random pixels, m� n

x = matrix, y = sample of m entries, m� n



Compressed sensing: recover signal x ∈ Rn from y = Ax ∈ Rm in the regime m� n.

More Examples:

x = audio signal, y = sample of amplitudes at m random moments of
time, m� n =∞



Compressed sensing: recover signal x ∈ Rn from y = Ax ∈ Rm in the regime m� n.

More Examples:

x = brain, y = MRI scan in m random directions. m� n =∞



Compressed sensing: recover signal x ∈ Rn from y = Ax ∈ Rm in the regime m� n.

More Examples:

Linear Regression Y = Xβ + ε

β ∈ Rp: unknown coefficient vector (∼ signal x)
X ∈ Rn×p: sample of n i.i.d. predictor variables (∼ matrix A)
Y = sample of n i.i.d. response variables (∼ measurement vector y)

n� p: small sample, large number of parameters



Compressed sensing: recover signal x ∈ Rn from y = Ax ∈ Rm in the regime m� n.

Recall: problem ill-posed. Recovery impossible in general, due to ker(A).

However, signal x may not be completely arbitrary.

Model: x ∈ K , a known signal set in Rn.

Can recover x up to K ∩ ker(A). So, if

diam(K ∩ ker(A)) ≤ ε

then we can recover x with error ε.



Compressed sensing: recover signal x ∈ K from y = Ax ∈ Rm in the regime m� n.

If diam(K ∩ ker(A)) ≤ ε then we can recover x with error ε.

Recovery is achieved by solving the program:

Find x ′ ∈ K such that Ax ′ = y .

In words: “Find a signal consistent with the model (K ) and with the
measurements (y).”

How to solve in practice?

If K is convex, this is a convex program. Many solvers exist.

If not, convexity: replace K by conv(K ).



The recovery problem reduces to a geometric question:

Question. For what convex sets K ⊂ Rn and what matrices A ∈ Rm×n is
diam(K ∩ ker(A)) small?

A is a random matrix.
Thus E = ker(A) is a random subspace in Rn of codimension m.



Question. For what convex sets K ⊂ Rn is diam(K ∩ E ) small,
where E is a random subspace of given codimension m?

Geometric Functional Analysis.
[Pajor-Tomczak ’85, Mendelson-Pajor-Tomczak ’07]

Trivial answer: for small sets K .

But why are common signal sets small?



Common signal sets are “small”

K = {common images}.
Few wavelet coefficients are large.
Thus images are sparse in the wavelet domain.



Common signal sets are “small”

K = {common audio signals}.
Band-limited. Few leading frequencies (Fourier coefficients) are large. So
these signals are sparse in the Fourier domain.



Common signal sets are “small”

K = {common matrices}.
For example, the matrix of Netflix preferences. Nearly low-rank.

[Candes-Recht ’08, . . . ]: matrix completion.



Common signal sets are “small”

Regression Y = Xβ + ε

Only few of the predictor variables have significant influence.
Thus β has only few large coefficients, hence is sparse.

Lasso [Tibshirani ’96]; Danzig Selector [Candes-Tao ’05, . . . ]



Back to our geometric question:

Question. Consider a “small” set K ⊂ Rn, and a random subspace E of
given codimension m. Is diam(K ∩ E ) small?



Example: K = conv(±ei ) = {x : ‖x‖1 ≤ 1} = Bn
1 , the `1 ball.

Theorem [Kashin ’77]. If codim(E ) = m = εn, then

diam(Bn
1 ∩ E ) ≤ C (ε)√

n
with high probability.

Hence Bn
1 ∩ E ∼ inscribed round ball!



Similar result for arbitrary m (not just proportional to n):

Theorem [Garnaev-Gluskin ’84]. If codim(E ) = m, then

diam(Bn
1 ∩ E ) ≤ C

√
log n/m

m
with high probability.

In particular: if m� log n then the diameter is small, o(1).

Corollary. One can accurately recover any signal x ∈ Bn
1

from m = O(log n) random linear measurements y = Ax ∈ Rm.

Very few measurements! Indeed, one needs log n bits to specify a vertex
x = ei = (0, . . . , 0, 1, 0, . . . , 0).



General signal sets K .

Question. What does a general convex set look like?

Concentration insight (recall Olivier Guedon’s talk):

K ≈ bulk + outliers.

Bulk = round ball, makes up most volume of K .
Outliers = few faraway tentacles, contain little volume.

V. Milman’s heuristic picture of a general convex body:



Example: K = Bn
1 . Heuristic picture:

Concentration of volume:

Vol(K )1/n ∼ Vol(•)1/n ∼ 1

n
.

For general sets K - recall Oliver Guedon’s talk.



Heuristic consequences.

A random subspace E should tend to miss the outliers,
pass through the bulk of K .

If so,
diam(K ∩ E ) ≈ diam(bulk) is small.

As we desired!



Rigorous results.

Theorem [Pajor-Tomczak ’85]. Consider a convex set K in Rn, and a
random subspace E of codimension m. Then

diam(K ∩ E ) ≤ C w(K )√
m

with high probability.

Here w(K ) is the mean width of K .

w(K ) := E sup
x∈K−K

〈g , x〉 =
√

n · E
[
width of K in random direction

]
.



Mean width.

w(K ) := E sup
x∈K−K

〈g , x〉 =
√

n · E
[
width of K in random direction

]
.

Remark: w(K ) = w(conv(K )). Survives convexification.

Example 1. K = Bn
1 or just the vertices {±ei}.

Here w(K ) ∼
√

log n. Almost the same as w(•) = 1.

Hence: the mean width sees the bulk, ignores the outliers.



Mean width.

w(K ) := E sup
x∈K−K

〈g , x〉 =
√

n · E
[
width of K in random direction

]
.

Example 2. K = {s-sparse vectors in Rn}. Here w(K ) ∼
√

s log n.

Intuition: w(K )2 is an effective dimension of K .
The amount of information in K .

Examples: Effective dim. of {±ei} is log n = # bits to specify the signal.
Effective dim. of {s-sparse vectors in Rn} is s log n.
(Intuition: need log

(n
s

)
∼ s log n bits to specify the sparsity pattern +s

bits to specify magnitudes of coefficients.)



Pajor-Tomczak’s Thm: diam(K ∩ E) . w(K)/
√
m for random E of codimension m.

Consequence of Pajor-Tomczak’s Theorem:
if m� w(K )2 then diameter is small, o(1).

Corollary. One can accurately recover any signal x ∈ K
from m = w(K )2 random linear measurements y = Ax ∈ Rm.

The sample size m ∼ effective dimension of K .



Surprisingly, non-linear measurements are also possible.

y = θ(Ax)

where a function θ : R→ R is applied to each coordinate of Ax .

Examples:

1. Generalized Linear Models (GLM) in Statistics.
In particular, logistic regression. [Plan-V ’12]

2. For θ(·) = sign(·), one-bit compressed sensing [Plan-V ’11]:



One-bit compressed sensing

y = sign(Ax) ∈ {−1, 1}m.

( Writing in coordinates, yi = sign(〈Ai , x〉), i = 1, . . . ,m. )

Extreme quantization: one bit per measurement.

Geometric interpretation:
y = vector of orientations of x with respect to m random hyperplanes
(with normals Ai ).

Random hyperplane tessellation (cutting) of K .



One-bit compressed sensing: y = sign(Ax) ∈ {−1, 1}m
y = vector of orientations of x with respect to m random hyperplanes.

Knowing y ⇐⇒ knowing the cell 3 x .

If diam(every cell) ≤ ε then we can recover x with error ε.

Recovery is achieved by solving the program:

Find x ′ ∈ K such that sign(Ax ′) = y .

Again, if K is convex, this is a convex program. (Many algorithms.)

It remains to answer the geometric question on the diameter:



Random hyperplane tessellations

Question. Given a set K ⊂ Rn, how many random hyperplanes does it
take in order to cut K in pieces of diameter ≤ ε?

Non-trivial even for K = Sn−1.

Stochastic geometry: mostly focuses on the shape of a fixed cell.

Kendall’s Conjecture. Let m→∞. If diameter of the zero cell → 0, then
its shape → round ball.
Proofs by [Kovalenko ’97] (n = 2), [Hug, Reitzner, Schneider ’04] (n ≥ 2).

Irrelevant: we need to control all cells.



Random hyperplane tessellations

Theorem [Plan-V ’12]. Consider a convex set K ⊂ Sn−1 and m random
hyperplanes. Then, with high probability,

diam(every cell) ≤

[
C w(K )√

m

]1/3
.

Here, as before, w(K ) is the mean width of K .

Very similar to Pajor-Tomczak’s bound on diam(K ∩ random subspace),
except for the exponent 1/3. It is probably not optimal.

Like before, a consequence for one-bit compressed sensing:

Corollary. One can accurately recover any signal x ∈ K from
m = w(K )2 random one-bit linear measurements y = Ax ∈ {−1, 1}m.



Can replace sign(·) by general function θ(·):

y = θ(Ax)

Recovery of x is achieved by solving the program

max〈y ,Ax ′〉 subject to x ′ ∈ K .

In words, “maximize the correlation with measurements (y), while staying
consistent with model (K )”.

K convex =⇒ convex program.

Surprise: the solver does not need to know θ; it may be unknown or
unspecified.

[Plan-V ’12]



Summary

Compressed Sensing problem:
Recover signal x ∈ Rn from m� n random measurements/samples

y = Ax (linear), y = θ(Ax) (non-linear).

Model: x ∈ K , where K is a known signal set.
Convex set ≈ bulk + outliers:

If the “bulk” of K is small, accurate recovery is possible. Precisely,

m ∼ w(K )2 = the effective dimension of K .

Here w(K ) is the mean width of K , a computable quantity.



Compressed Sensing

Signal processing (sampling)

Probability (random matrices, stochastic geometry)

Information theory (effective dimension ∼ information in K )

Statistics (regression)

Geometric functional analysis (sections of convex sets)



Where to find literature:

Compressed Sensing Webpage at Rice University
http://dsp.rice.edu/cs

My webpage at Michigan: recent papers with Yaniv Plan
www.umich.edu/~romanv

Thank you!


