Probabilistic Reasoning in Compressed Sensing

Roman Vershynin

University of Michigan

Journées MAS Clermont-Ferrand, France August 31, 2012

(中) (종) (종) (종) (종) (종)

Compressed Sensing

It is a young field on the crossroads of:

- Signal processing
- Probability
- Information theory
- Statistics
- Geometric functional analysis

This talk: a very incomplete picture. Emphasis on probabilistic, geometric insights.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Sampling

Problem: Recover a signal x from a sample of m linear measurements

$$f_1(x),\ldots,f_m(x).$$

Example: *f_i* are point evaluation functionals at random locations.

Sampling

Unknown signal $x \in \mathbb{R}^n$.

Take *m* linear samples/measurements $y = Ax \in \mathbb{R}^m$.

Here A is a known measurement **matrix**, the sampling device.

<ロト <四ト <注入 <注下 <注下 <

Goal: recover x from y.

Goal: recover x from y.

- If $m \ge n$, the problem is well-posed, trivial: $x = A^{-1}y$.
- If m < n, the problem is **ill-posed**, recovery impossible due to ker(A).

<ロト <四ト <注入 <注下 <注下 <

Compressed sensing is seeking recovery strategies in the regime $m \ll n$. [Donoho, Candes-Tao, ... 2004+] **Compressed sensing**: recover signal $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^m$ in the regime $m \ll n$.

Example:

 $x = \text{image}, y = \text{sample of } m \text{ random pixels}, m \ll n$

(ロ) (部) (E) (E)

x =matrix, y =sample of m entries, $m \ll n$

Compressed sensing: recover signal $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^m$ in the regime $m \ll n$.

More Examples:

x= audio signal, y= sample of amplitudes at m random moments of time, $m\ll n=\infty$

イロト イポト イヨト イヨト

æ

More Examples:

 $x = brain, y = MRI scan in m random directions. m \ll n = \infty$

Compressed sensing: recover signal $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^m$ in the regime $m \ll n$.

More Examples:

Linear Regression $Y = X\beta + \varepsilon$

 $\beta \in \mathbb{R}^{p}$: unknown coefficient vector (~ signal x) $X \in \mathbb{R}^{n \times p}$: sample of *n* i.i.d. predictor variables (~ matrix A) Y = sample of *n* i.i.d. response variables (\sim measurement vector *y*)

 $n \ll p$: small sample, large number of parameters

Compressed sensing: recover signal $x \in \mathbb{R}^n$ from $y = Ax \in \mathbb{R}^m$ in the regime $m \ll n$.

Recall: problem ill-posed. Recovery **impossible** in general, due to ker(A).

However, signal x may not be completely arbitrary.

Model: $x \in K$, a known signal set in \mathbb{R}^n .

Can recover x up to $K \cap \text{ker}(A)$. So, if

 $\mathsf{diam}(K \cap \mathsf{ker}(A)) \leq \varepsilon$

then we can recover x with error ε .

Compressed sensing: recover signal $x \in K$ from $y = Ax \in \mathbb{R}^m$ in the regime $m \ll n$.

If diam $(K \cap \ker(A)) \leq \varepsilon$ then we can recover x with error ε .

Recovery is achieved by solving the program:

Find $x' \in K$ such that Ax' = y.

In words: "Find a signal consistent with the model (K) and with the measurements (y)."

How to solve in practice?

- If K is convex, this is a **convex program**. Many solvers exist.
- If not, convexity: replace K by conv(K).

The recovery problem reduces to a geometric question:

Question. For what convex sets $K \subset \mathbb{R}^n$ and what matrices $A \in \mathbb{R}^{m \times n}$ is diam $(K \cap \ker(A))$ small?

<ロト <四ト <注入 <注下 <注下 <

A is a **random matrix**. Thus E = ker(A) is a **random subspace** in \mathbb{R}^n of codimension m.

< □ > < @ > < 注 > < 注 > ... 注

Question. For what convex sets $K \subset \mathbb{R}^n$ is diam $(K \cap E)$ small, where E is a random subspace of given codimension m?

Geometric Functional Analysis.

[Pajor-Tomczak '85, Mendelson-Pajor-Tomczak '07]

Trivial answer: for small sets K.

But why are common signal sets small?

・ロト ・御ト ・ヨト ・ヨト

æ

$K = \{$ common audio signals $\}.$

Band-limited. Few leading frequencies (Fourier coefficients) are large. So these signals are **sparse in the Fourier domain**.

(日) (四) (三) (三) (三)

 $K = \{$ common matrices $\}.$

For example, the matrix of Netflix preferences. Nearly low-rank.

◆□ → ◆□ → ◆□ → ◆□ → □ □ □

[Candes-Recht '08, ...]: matrix completion.

Regression $Y = X\beta + \varepsilon$

(ロ) (部) (E) (E)

Only few of the predictor variables have significant influence. Thus β has only few large coefficients, hence is **sparse**.

Lasso [Tibshirani '96]; Danzig Selector [Candes-Tao '05, ...]

Back to our geometric question:

Question. Consider a "small" set $K \subset \mathbb{R}^n$, and a random subspace E of given codimension m. Is diam $(K \cap E)$ small?

(中) (종) (종) (종) (종) (종)

Example: $K = \operatorname{conv}(\pm e_i) = \{x : \|x\|_1 \le 1\} = B_1^n$, the ℓ_1 ball.

Theorem [Kashin '77]. If $\operatorname{codim}(E) = m = \varepsilon n$, then

diam
$$(B_1^n \cap E) \leq \frac{C(\varepsilon)}{\sqrt{n}}$$
 with high probability.

Hence $B_1^n \cap E \sim$ inscribed *round ball*!

Similar result for arbitrary m (not just proportional to n):

Theorem [Garnaev-Gluskin '84]. If codim(E) = m, then

$$diam(B_1^n \cap E) \le C\sqrt{\frac{\log n/m}{m}}$$
 with high probability.

In particular: if $m \gg \log n$ then the diameter is small, o(1).

Corollary. One can accurately recover any signal $x \in B_1^n$ from $m = O(\log n)$ random linear measurements $y = Ax \in \mathbb{R}^m$.

Very few measurements! Indeed, one needs log *n* bits to specify a vertex $x = e_i = (0, ..., 0, 1, 0, ..., 0).$

General signal sets K.

Question. What does a general convex set look like?

Concentration insight (recall Olivier Guedon's talk):

 $K \approx \text{bulk} + \text{outliers}.$

Bulk = round ball, makes up most volume of K. Outliers = few faraway tentacles, contain little volume.

V. Milman's heuristic picture of a general convex body:

Example: $K = B_1^n$. Heuristic picture:

Concentration of volume:

$$\operatorname{Vol}({\mathcal K})^{1/n} \sim \operatorname{Vol}(ullet)^{1/n} \sim rac{1}{n}.$$

(日) (四) (王) (王) (王)

æ

For general sets K - recall Oliver Guedon's talk.

Heuristic consequences.

A random subspace E should tend to **miss the outliers**, pass through the bulk of K.

lf so,

 $\operatorname{diam}(K \cap E) \approx \operatorname{diam}(bulk)$ is small.

<ロ> (四) (四) (三) (三) (三)

12

As we desired!

Rigorous results.

Theorem [Pajor-Tomczak '85]. Consider a convex set K in \mathbb{R}^n , and a random subspace E of codimension m. Then

$$\mathsf{diam}(K \cap E) \leq rac{C \, w(K)}{\sqrt{m}}$$
 with high probability.

Here w(K) is the mean width of K.

 $w(K) := \mathbb{E} \sup_{x \in K - K} \langle g, x \rangle = \sqrt{n} \cdot \mathbb{E} \left[\text{width of } K \text{ in random direction} \right].$

Mean width.

$$w(K) := \mathbb{E} \sup_{x \in K-K} \langle g, x \rangle = \sqrt{n} \cdot \mathbb{E} \left[\text{width of } K \text{ in random direction} \right].$$

Remark: w(K) = w(conv(K)). Survives convexification.

Example 1. $K = B_1^n$ or just the vertices $\{\pm e_i\}$. Here $w(K) \sim \sqrt{\log n}$. Almost the same as $w(\bullet) = 1$.

Hence: the mean width sees the bulk, ignores the outliers.

Mean width.

Example 2. $K = \{s \text{-sparse vectors in } \mathbb{R}^n\}$. Here $w(K) \sim \sqrt{s \log n}$.

Intuition: $w(K)^2$ is an **effective dimension** of K. The amount of information in K.

Examples: Effective dim. of $\{\pm e_i\}$ is $\log n = \#$ bits to specify the signal. Effective dim. of $\{s\text{-sparse vectors in } \mathbb{R}^n\}$ is $s \log n$. (Intuition: need $\log \binom{n}{s} \sim s \log n$ bits to specify the sparsity pattern +s bits to specify magnitudes of coefficients.) **Pajor-Tomczak's Thm:** diam $(K \cap E) \leq w(K)/\sqrt{m}$ for random E of codimension m.

Consequence of Pajor-Tomczak's Theorem: if $m \gg w(K)^2$ then diameter is small, o(1).

Corollary. One can accurately recover any signal $x \in K$ from $m = w(K)^2$ random linear measurements $y = Ax \in \mathbb{R}^m$.

The sample size $m \sim$ effective dimension of K.

Surprisingly, non-linear measurements are also possible.

 $y=\theta(Ax)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where a function $\theta : \mathbb{R} \to \mathbb{R}$ is applied to each coordinate of Ax.

Examples:

1. Generalized Linear Models (GLM) in Statistics. In particular, **logistic regression**. [Plan-V '12]

2. For $\theta(\cdot) = \text{sign}(\cdot)$, one-bit compressed sensing [Plan-V '11]:

One-bit compressed sensing

$$y = \operatorname{sign}(Ax) \in \{-1, 1\}^m.$$

(Writing in coordinates, $y_i = \text{sign}(\langle A_i, x \rangle)$, i = 1, ..., m.)

Extreme quantization: one bit per measurement.

Geometric interpretation:

y = vector of orientations of x with respect to m random hyperplanes (with normals A_i).

▲□▶ ▲圖▶ ▲理▶ ▲理▶ _ 理 _ .

Random hyperplane tessellation (cutting) of K.

One-bit compressed sensing: $y = sign(Ax) \in \{-1, 1\}^m$ y = vector of orientations of x with respect to m random hyperplanes.

Knowing $y \iff$ knowing the **cell** $\ni x$.

If diam(every cell) $\leq \varepsilon$ then we can recover x with error ε .

Recovery is achieved by solving the program:

Find $x' \in K$ such that sign(Ax') = y.

Again, if K is convex, this is a **convex program**. (Many algorithms.)

It remains to answer the geometric question on the diameter:

Random hyperplane tessellations

Question. Given a set $K \subset \mathbb{R}^n$, how many random hyperplanes does it take in order to cut K in pieces of diameter $\leq \varepsilon$?

Non-trivial even for $K = S^{n-1}$.

Stochastic geometry: mostly focuses on the shape of a *fixed* cell.

Kendall's Conjecture. Let $m \to \infty$. If diameter of the zero cell $\to 0$, then its shape \to round ball.

Proofs by [Kovalenko '97] (n = 2), [Hug, Reitzner, Schneider '04] $(n \ge 2)$.

Irrelevant: we need to control all cells.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Random hyperplane tessellations

Theorem [Plan-V '12]. Consider a convex set $K \subset S^{n-1}$ and *m* random hyperplanes. Then, with high probability,

diam(every cell)
$$\leq \left[\frac{C w(K)}{\sqrt{m}}\right]^{1/3}$$

Here, as before, w(K) is the mean width of K.

Very similar to Pajor-Tomczak's bound on diam($K \cap$ random subspace), except for the exponent 1/3. It is probably not optimal.

Like before, a consequence for one-bit compressed sensing:

Corollary. One can accurately recover any signal $x \in K$ from $m = w(K)^2$ random one-bit linear measurements $y = Ax \in \{-1, 1\}^m$.

Can replace sign(·) by general function $\theta(\cdot)$:

 $y = \theta(Ax)$

Recovery of x is achieved by solving the program

$$\max\langle y, Ax' \rangle$$
 subject to $x' \in K$.

In words, "maximize the correlation with measurements (y), while staying consistent with model (K)".

K convex \implies convex program.

Surprise: the solver **does not need to know** θ ; it may be unknown or unspecified.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

[Plan-V '12]

Summary

Compressed Sensing problem:

Recover signal $x \in \mathbb{R}^n$ from $m \ll n$ random measurements/samples

y = Ax (linear), $y = \theta(Ax)$ (non-linear).

Model: $x \in K$, where K is a known signal set. Convex set \approx bulk + outliers:

If the "bulk" of K is small, accurate recovery is possible. Precisely,

 $m \sim w(K)^2$ = the effective dimension of K.

Here w(K) is the mean width of K, a computable quantity.

Compressed Sensing

- Signal processing (sampling)
- Probability (random matrices, stochastic geometry)
- Information theory (effective dimension \sim information in K)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Statistics (regression)
- Geometric functional analysis (sections of convex sets)

Where to find literature:

- Compressed Sensing Webpage at Rice University http://dsp.rice.edu/cs
- My webpage at Michigan: recent papers with Yaniv Plan www.umich.edu/~romanv

Thank you!