Probabilistic Reasoning in Compressed Sensing

Roman Vershynin
University of Michigan
Journées MAS
Clermont-Ferrand, France
August 31, 2012

Compressed Sensing

It is a young field on the crossroads of：
－Signal processing
－Probability
－Information theory
－Statistics
－Geometric functional analysis

This talk：a very incomplete picture．
Emphasis on probabilistic，geometric insights．

Sampling

Problem: Recover a signal x from a sample of m linear measurements

$$
f_{1}(x), \ldots, f_{m}(x)
$$

Example: f_{i} are point evaluation functionals at random locations.

Sampling

Unknown signal $x \in \mathbb{R}^{n}$.
Take m linear samples/measurements $y=A x \in \mathbb{R}^{m}$.
Here A is a known measurement matrix, the sampling device.

Goal: recover x from y.

Goal：recover x from y ．
－If $m \geq n$ ，the problem is well－posed，trivial：$x=A^{-1} y$ ．
－If $m<n$ ，the problem is ill－posed，recovery impossible due to $\operatorname{ker}(A)$ ．
Compressed sensing is seeking recovery strategies in the regime $m \ll n$ ． ［Donoho，Candes－Tao，．．．2004＋］

Compressed sensing：recover signal $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{m}$ in the regime $m \ll n$ ．

Example：

$x=$ image，$y=$ sample of m random pixels，$m \ll n$

$x=$ matrix，$y=$ sample of m entries，$m \ll n$

Compressed sensing: recover signal $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{m}$ in the regime $m \ll n$.

More Examples:

$x=$ audio signal, $y=$ sample of amplitudes at m random moments of time, $m \ll n=\infty$

Compressed sensing: recover signal $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{m}$ in the regime $m \ll n$.

More Examples:

$x=$ brain, $y=$ MRI scan in m random directions. $m \ll n=\infty$

Compressed sensing: recover signal $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{m}$ in the regime $m \ll n$.

More Examples:

Linear Regression $\quad Y=X \beta+\varepsilon$

$\beta \in \mathbb{R}^{p}$: unknown coefficient vector (\sim signal x)
$X \in \mathbb{R}^{n \times p}$: sample of n i.i.d. predictor variables (\sim matrix A)
$Y=$ sample of n i.i.d. response variables (\sim measurement vector y)
$n \ll p$: small sample, large number of parameters

Compressed sensing: recover signal $x \in \mathbb{R}^{n}$ from $y=A x \in \mathbb{R}^{m}$ in the regime $m \ll n$.

Recall: problem ill-posed. Recovery impossible in general, due to $\operatorname{ker}(A)$. However, signal x may not be completely arbitrary.

Model: $x \in K$, a known signal set in \mathbb{R}^{n}.
Can recover x up to $K \cap \operatorname{ker}(A)$. So, if

$$
\operatorname{diam}(K \cap \operatorname{ker}(A)) \leq \varepsilon
$$

then we can recover x with error ε.

Compressed sensing: recover signal $x \in K$ from $y=A x \in \mathbb{R}^{m}$ in the regime $m \ll n$.

If $\operatorname{diam}(K \cap \operatorname{ker}(A)) \leq \varepsilon$ then we can recover x with error ε.

Recovery is achieved by solving the program:
Find $x^{\prime} \in K$ such that $A x^{\prime}=y$.
In words: "Find a signal consistent with the model (K) and with the measurements (y)."

How to solve in practice?

- If K is convex, this is a convex program. Many solvers exist.
- If not, convexity: replace K by $\operatorname{conv}(K)$.

The recovery problem reduces to a geometric question:
Question. For what convex sets $K \subset \mathbb{R}^{n}$ and what matrices $A \in \mathbb{R}^{m \times n}$ is $\operatorname{diam}(K \cap \operatorname{ker}(A))$ small?
A is a random matrix.
Thus $E=\operatorname{ker}(A)$ is a random subspace in \mathbb{R}^{n} of codimension m.

Question. For what convex sets $K \subset \mathbb{R}^{n}$ is $\operatorname{diam}(K \cap E)$ small, where E is a random subspace of given codimension m ?

Geometric Functional Analysis.

[Pajor-Tomczak '85, Mendelson-Pajor-Tomczak '07]
Trivial answer: for small sets K.
But why are common signal sets small?

Common signal sets are "small"
$K=\{$ common images $\}$.
Few wavelet coefficients are large.
Thus images are sparse in the wavelet domain.

Common signal sets are "small"

$K=\{$ common audio signals $\}$.
Band-limited. Few leading frequencies (Fourier coefficients) are large. So these signals are sparse in the Fourier domain.

Common signal sets are "small"
$K=\{$ common matrices $\}$.
For example, the matrix of Netflix preferences. Nearly low-rank.

[Candes-Recht '08, ...]: matrix completion.

Common signal sets are "small"

Regression $\quad Y=X \beta+\varepsilon$

Only few of the predictor variables have significant influence. Thus β has only few large coefficients, hence is sparse.

Lasso [Tibshirani '96]; Danzig Selector [Candes-Tao '05, ...]

Back to our geometric question:
Question. Consider a "small" set $K \subset \mathbb{R}^{n}$, and a random subspace E of given codimension m. Is $\operatorname{diam}(K \cap E)$ small?

Example: $K=\operatorname{conv}\left(\pm e_{i}\right)=\left\{x:\|x\|_{1} \leq 1\right\}=B_{1}^{n}, \quad$ the ℓ_{1} ball.

Theorem [Kashin '77]. If $\operatorname{codim}(E)=m=\varepsilon n$, then

$$
\operatorname{diam}\left(B_{1}^{n} \cap E\right) \leq \frac{C(\varepsilon)}{\sqrt{n}} \quad \text { with high probability. }
$$

Hence $B_{1}^{n} \cap E \sim$ inscribed round ball!

Similar result for arbitrary m (not just proportional to n):
Theorem [Garnaev-Gluskin '84]. If $\operatorname{codim}(E)=m$, then

$$
\operatorname{diam}\left(B_{1}^{n} \cap E\right) \leq C \sqrt{\frac{\log n / m}{m}} \quad \text { with high probability. }
$$

In particular: if $m \gg \log n$ then the diameter is small, o(1).
Corollary. One can accurately recover any signal $x \in B_{1}^{n}$ from $m=O(\log n)$ random linear measurements $y=A x \in \mathbb{R}^{m}$.

Very few measurements! Indeed, one needs $\log n$ bits to specify a vertex $x=e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$.

General signal sets K.

Question. What does a general convex set look like?

Concentration insight (recall Olivier Guedon's talk):

$$
K \approx \text { bulk }+ \text { outliers. }
$$

Bulk $=$ round ball, makes up most volume of K.
Outliers $=$ few faraway tentacles, contain little volume.
V. Milman's heuristic picture of a general convex body:

Example: $K=B_{1}^{n}$. Heuristic picture:

Concentration of volume:

$$
\operatorname{Vol}(K)^{1 / n} \sim \operatorname{Vol}(\bullet)^{1 / n} \sim \frac{1}{n}
$$

For general sets K - recall Oliver Guedon's talk.

Heuristic consequences．

A random subspace E should tend to miss the outliers， pass through the bulk of K ．

If so，

$$
\operatorname{diam}(K \cap E) \approx \operatorname{diam}(b u l k) \quad \text { is small. }
$$

As we desired！

Rigorous results.

Theorem [Pajor-Tomczak '85]. Consider a convex set K in \mathbb{R}^{n}, and a random subspace E of codimension m. Then

$$
\operatorname{diam}(K \cap E) \leq \frac{C w(K)}{\sqrt{m}} \quad \text { with high probability. }
$$

Here $w(K)$ is the mean width of K.

$$
w(K):=\mathbb{E} \sup _{x \in K-K}\langle g, x\rangle=\sqrt{n} \cdot \mathbb{E}[\text { width of } K \text { in random direction }] .
$$

Mean width.

$$
w(K):=\mathbb{E} \sup _{x \in K-K}\langle g, x\rangle=\sqrt{n} \cdot \mathbb{E}[\text { width of } K \text { in random direction }] .
$$

Remark: $w(K)=w(\operatorname{conv}(K))$. Survives convexification.
Example 1. $K=B_{1}^{n}$ or just the vertices $\left\{ \pm e_{i}\right\}$. Here $w(K) \sim \sqrt{\log n}$. Almost the same as $w(\bullet)=1$.

Hence: the mean width sees the bulk, ignores the outliers.

Mean width.

$$
w(K):=\mathbb{E} \sup _{x \in K-K}\langle g, x\rangle=\sqrt{n} \cdot \mathbb{E}[\text { width of } K \text { in random direction }] .
$$

Example 2. $K=\left\{s\right.$-sparse vectors in $\left.\mathbb{R}^{n}\right\}$. Here $w(K) \sim \sqrt{s \log n}$.
Intuition: $w(K)^{2}$ is an effective dimension of K.
The amount of information in K.
Examples: Effective dim. of $\left\{ \pm e_{i}\right\}$ is $\log n=\#$ bits to specify the signal.
Effective dim. of $\left\{s\right.$-sparse vectors in $\left.\mathbb{R}^{n}\right\}$ is $s \log n$. (Intuition: need $\log \binom{n}{s} \sim s \log n$ bits to specify the sparsity pattern $+s$ bits to specify magnitudes of coefficients.)

Pajor-Tomczak's Thm: $\operatorname{diam}(K \cap E) \lesssim w(K) / \sqrt{m}$ for random E of codimension m.

Consequence of Pajor-Tomczak's Theorem:
if $m \gg w(K)^{2}$ then diameter is small, o(1).

Corollary. One can accurately recover any signal $x \in K$ from $m=w(K)^{2}$ random linear measurements $y=A x \in \mathbb{R}^{m}$.

The sample size $m \sim$ effective dimension of K.

Surprisingly, non-linear measurements are also possible.

$$
y=\theta(A x)
$$

where a function $\theta: \mathbb{R} \rightarrow \mathbb{R}$ is applied to each coordinate of $A x$.

Examples:

1. Generalized Linear Models (GLM) in Statistics.

In particular, logistic regression. [Plan-V '12]
2. For $\theta(\cdot)=\operatorname{sign}(\cdot)$, one-bit compressed sensing [Plan-V '11]:

One-bit compressed sensing

$$
y=\operatorname{sign}(A x) \quad \in\{-1,1\}^{m}
$$

(Writing in coordinates, $y_{i}=\operatorname{sign}\left(\left\langle A_{i}, x\right\rangle\right), i=1, \ldots, m$.)
Extreme quantization: one bit per measurement.
Geometric interpretation:
$y=$ vector of orientations of x with respect to m random hyperplanes (with normals A_{i}).

Random hyperplane tessellation (cutting) of K.

One-bit compressed sensing: $y=\operatorname{sign}(A x) \in\{-1,1\}^{m}$

 $y=$ vector of orientations of x with respect to m random hyperplanes.

Knowing $y \Longleftrightarrow$ knowing the cell $\ni x$.
If diam(every cell) $\leq \varepsilon$ then we can recover x with error ε.
Recovery is achieved by solving the program:
Find $x^{\prime} \in K$ such that $\operatorname{sign}\left(A x^{\prime}\right)=y$.

Again, if K is convex, this is a convex program. (Many algorithms.)
It remains to answer the geometric question on the diameter:

Random hyperplane tessellations

Question. Given a set $K \subset \mathbb{R}^{n}$, how many random hyperplanes does it take in order to cut K in pieces of diameter $\leq \varepsilon$?

Non-trivial even for $K=S^{n-1}$.
Stochastic geometry: mostly focuses on the shape of a fixed cell.
Kendall's Conjecture. Let $m \rightarrow \infty$. If diameter of the zero cell $\rightarrow 0$, then its shape \rightarrow round ball.
Proofs by [Kovalenko '97] ($n=2$), [Hug, Reitzner, Schneider '04] ($n \geq 2$).
Irrelevant: we need to control all cells.

Theorem [Plan-V '12]. Consider a convex set $K \subset S^{n-1}$ and m random hyperplanes. Then, with high probability,

$$
\operatorname{diam}(\text { every cell }) \leq\left[\frac{C w(K)}{\sqrt{m}}\right]^{1 / 3}
$$

Here, as before, $w(K)$ is the mean width of K.

Very similar to Pajor-Tomczak's bound on $\operatorname{diam}(K \cap$ random subspace), except for the exponent $1 / 3$. It is probably not optimal.

Like before, a consequence for one-bit compressed sensing:
Corollary. One can accurately recover any signal $x \in K$ from $m=w(K)^{2}$ random one-bit linear measurements $y=A x \in\{-1,1\}^{m}$.

Can replace $\operatorname{sign}(\cdot)$ by general function $\theta(\cdot)$ ：

$$
y=\theta(A x)
$$

Recovery of x is achieved by solving the program

$$
\max \left\langle y, A x^{\prime}\right\rangle \quad \text { subject to } \quad x^{\prime} \in K
$$

In words，＂maximize the correlation with measurements（ y ），while staying consistent with model (K)＂．
K convex \Longrightarrow convex program．
Surprise：the solver does not need to know θ ；it may be unknown or unspecified．
［Plan－V＇12］

Summary

Compressed Sensing problem:
Recover signal $x \in \mathbb{R}^{n}$ from $m \ll n$ random measurements/samples

$$
y=A x \quad \text { (linear) }, \quad y=\theta(A x) \quad \text { (non-linear) }
$$

Model: $x \in K$, where K is a known signal set.
Convex set \approx bulk + outliers:

If the "bulk" of K is small, accurate recovery is possible. Precisely, $m \sim w(K)^{2}=$ the effective dimension of K.

Here $w(K)$ is the mean width of K, a computable quantity.

Compressed Sensing

- Signal processing (sampling)
- Probability (random matrices, stochastic geometry)
- Information theory (effective dimension \sim information in K)
- Statistics (regression)
- Geometric functional analysis (sections of convex sets)

Where to find literature:

- Compressed Sensing Webpage at Rice University http://dsp.rice.edu/cs
- My webpage at Michigan: recent papers with Yaniv Plan www.umich.edu/ ${ }^{\sim}$ romanv

Thank you!

