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Reg. Struct. approach: Lift concrete fixed point problem to an
abstract fixed point problem in a space of jets of (generalized) Taylor
polynomials.

Looking at �4
3 we have
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Passage from abstract to concrete: Encoded by a model
Z = (⇧, �). Here ⇧ = {⇧

x

}
x2Rd

, all of the ⇧
x

’s map an

indeterminant ⌧ to a concrete element of S 0(Rd). ⇧ and � need to
satisfy fairly restrictive algebraic and analytic conditions. ⇧

x

[⌧ ] is the
“homogenous” x -centered incarnation of the space-time

distribution represented by the indeterminant ⌧

Key Bound: |(⇧
x

[⌧ ])(✓
x ,�)| . �|⌧ | uniformly for � small.
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A step-by-step sketch of how one arrives at Z in practice
Mollify ⇣ at scale ✏ to get a smooth space-time function ⇣✏ which we
will then lift to a model.

The final model Z will be constructed as the
✏ # 0 limit of a family of models parameterized by ✏ (each one of
which is explicitly defined in terms of ⇣✏).
Let ⇧✏ be the “naive” way of mapping symbols to convolutions of ⇣✏.
We denote by Z ✏ = (⇧✏, �✏) the canonical lift of ⇣✏. In general we
cannot set (⇧✏

x

[⌧ ])(•) := (⇧✏[⌧ ])(•).We must already perform
positive renormalization in order to get an acceptable model, set

(⇧✏
x

⌧)(•) = (⇧✏[·](•)⌦ ⇧✏[·](x))(1⌦A+)�⌧

where � : H 7! H⌦H+ is a comodule coproduct and A+ : H+ 7! H
is a pseudo-antipode.
Positive renormalization counterterms are not designed to kill the
divergences that appear in the individual terms of perturbation theory.
Instead they enforce the property of homogeneity. This property is
what allows the fixed point relations for non-perturbative parts of the
expansion to be closed.
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Within the framework of regularity structures the issue of UV
divergences appears when we try to show the convergence of the Z ✏.

In particular we would want the bound

|(⇧✏
x

⌧)(✓
x ,�)| . �|⌧ | uniformly for � and ✏ small.

UV divergences will be handled by the negative renormalizations.
These divergences already occur on the level of ⇧✏ so it is natural to
the define the negative renormalizations on this object.

⇧̂

✏⌧(•) =
⇣
⇧

✏,E[·](0)⌦⇧

✏[·](•)
⌘
(A� ⌦ 1)�̂⌧.

Here �̂ : H 7! H� ⌦H, and A� : H� 7! H is a pseudo-antipode.

The ⇧

✏ will “converge” - but this is only a “perturbative” statement
(term by term), in order to have a non-perturbative statement we
need convergence in the space of models! Need to build the maps ⇧̂✏

x

.

Ajay Chandra (Warwick) Analytic BPHZ February 11th, 2016 4 / 10



Within the framework of regularity structures the issue of UV
divergences appears when we try to show the convergence of the Z ✏.
In particular we would want the bound

|(⇧✏
x

⌧)(✓
x ,�)| . �|⌧ | uniformly for � and ✏ small.

UV divergences will be handled by the negative renormalizations.
These divergences already occur on the level of ⇧✏ so it is natural to
the define the negative renormalizations on this object.

⇧̂

✏⌧(•) =
⇣
⇧

✏,E[·](0)⌦⇧

✏[·](•)
⌘
(A� ⌦ 1)�̂⌧.

Here �̂ : H 7! H� ⌦H, and A� : H� 7! H is a pseudo-antipode.

The ⇧

✏ will “converge” - but this is only a “perturbative” statement
(term by term), in order to have a non-perturbative statement we
need convergence in the space of models! Need to build the maps ⇧̂✏

x

.

Ajay Chandra (Warwick) Analytic BPHZ February 11th, 2016 4 / 10



Within the framework of regularity structures the issue of UV
divergences appears when we try to show the convergence of the Z ✏.
In particular we would want the bound

|(⇧✏
x

⌧)(✓
x ,�)| . �|⌧ | uniformly for � and ✏ small.

UV divergences will be handled by the negative renormalizations.
These divergences already occur on the level of ⇧✏ so it is natural to
the define the negative renormalizations on this object.

⇧̂

✏⌧(•) =
⇣
⇧

✏,E[·](0)⌦⇧

✏[·](•)
⌘
(A� ⌦ 1)�̂⌧.

Here �̂ : H 7! H� ⌦H, and A� : H� 7! H is a pseudo-antipode.

The ⇧

✏ will “converge” - but this is only a “perturbative” statement
(term by term), in order to have a non-perturbative statement we
need convergence in the space of models! Need to build the maps ⇧̂✏

x

.

Ajay Chandra (Warwick) Analytic BPHZ February 11th, 2016 4 / 10



Within the framework of regularity structures the issue of UV
divergences appears when we try to show the convergence of the Z ✏.
In particular we would want the bound

|(⇧✏
x

⌧)(✓
x ,�)| . �|⌧ | uniformly for � and ✏ small.

UV divergences will be handled by the negative renormalizations.
These divergences already occur on the level of ⇧✏ so it is natural to
the define the negative renormalizations on this object.

⇧̂

✏⌧(•) =
⇣
⇧

✏,E[·](0)⌦⇧

✏[·](•)
⌘
(A� ⌦ 1)�̂⌧.

Here �̂ : H 7! H� ⌦H, and A� : H� 7! H is a pseudo-antipode.

The ⇧

✏ will “converge” - but this is only a “perturbative” statement
(term by term), in order to have a non-perturbative statement we
need convergence in the space of models!

Need to build the maps ⇧̂✏
x

.

Ajay Chandra (Warwick) Analytic BPHZ February 11th, 2016 4 / 10



Within the framework of regularity structures the issue of UV
divergences appears when we try to show the convergence of the Z ✏.
In particular we would want the bound

|(⇧✏
x

⌧)(✓
x ,�)| . �|⌧ | uniformly for � and ✏ small.

UV divergences will be handled by the negative renormalizations.
These divergences already occur on the level of ⇧✏ so it is natural to
the define the negative renormalizations on this object.

⇧̂

✏⌧(•) =
⇣
⇧

✏,E[·](0)⌦⇧

✏[·](•)
⌘
(A� ⌦ 1)�̂⌧.

Here �̂ : H 7! H� ⌦H, and A� : H� 7! H is a pseudo-antipode.

The ⇧

✏ will “converge” - but this is only a “perturbative” statement
(term by term), in order to have a non-perturbative statement we
need convergence in the space of models! Need to build the maps ⇧̂✏

x

.

Ajay Chandra (Warwick) Analytic BPHZ February 11th, 2016 4 / 10



Since we’re using an extended regularity structure we can define these
maps succinctly.

⇧̂✏
x

[⌧ ](•) =
⇣
⇧

E,✏[·](0)⌦⇧

✏[·](•)⌦⇧

✏[·](x)
⌘
(A�⌦1⌦A+)(1⌦�)�̂⌧.

Our point of departure: We have inserted all the counterterms we
think we need but it is not immediate that we have the bound:

For all p
and ⌧ with |⌧ | < 0,

E[|(⇧✏
0⌧)(✓0,�)|p] . �p(|⌧ |+) uniformly for

�, ✏ small.

Moment estimate can be expressed as a sum of graphs. We expand
A+ and A� as a “double forest” formula, perform a multiscale
expansion, and then reorganize forests in a scale-dependent manner.

I Extension of Feldman-Magnen-Rivasseau-Seneor ’85 multiscale
techniques, organizes both positive and negative renormalization
counterterms.

I Generalizes bound found in Hairer-Quastel.
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Organizing the sum over scales

����
Z

dxV H(xV)

���� =

������

X

j2N

Z
dxV H j(xV)

������

=

������

X

j2N↵,tri

Z
dxV H j(xV)

������


X

T2T

X

`2L
T

`(v⇤)�↵

X

j2t�1[(T ,`)]

����
Z

dxV H j(xV)

����
| {z }

.(
Q

e

2`(e)a
e )(

Q
v2T

� 2�|s|`(v)(d
v

�1))

Want to bound, for a fixed T 2 T ,

X

`2L
T

`(v⇤)�↵

 
Y

e

2`(e)ae

! 
Y

v2T�

2�|s|`(v)(d
v

�1)

!
.
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A rough sketch of how counterterms are organized.

X

F2F

X

C2CF

Z
dxV HC,F(xV)

Where

F = collection of all forests
of acceptable divergent structures

CF =
the collection of all acceptable cut sets

which do not include any cut
falling into an element of F
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To handle positive renormalizations we imagine there is a fictitious
edge between each vertex and 0 which is also given a scale index.

We
now prescribe algorithms which for a given scale assignment j tell us
which renormalization cancellations we want to harvest.

Given an edge e = (e�, e+) 2 C, we want to harvest the positive
renormalization corresponding to e if

j{e+,0} > j{e�,0}.

The situation for negative renormalizations is more complicated. For
now we forget about positive renormalizations. Define “projection
operator” P j : F 7! F by setting

P j[F ] =

8
>>>><

>>>>:

T 2 F :

the largest scale index among the
external edges (mod F) of T
is greater than or equal to

the minimum scale index among the
internal edges (mod F) of T .

9
>>>>=

>>>>;
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P j is called a forest projection because it satisfies (P j)2 = P j.

Define

M :=

⇢
M ✓ F :

9S 2 F, j 2 N such that
P j[S] = S and M = (P j)�1[S]

�

NM :=

⇢
j 2 N :

9S 2 F such that
P j[S] = S and M = (P j)�1[S]

�
.

M is a collection of “intervals” of the poset F. Idea: Summing
F 2 M for fixed M 2 M renormalizes the divergences that appear for
coalesence trees determined by j 2 NM on subsets of graph vertices
where the elements of Min(M) are contracted:

X

j2NM

�����
X

F2M

Z
dxV H j

?,F (xV)

����� < 1

Similar to overlapping divergences, the positive and negative
renormalizations we need simultaneously are non-overlapping in
phase-space so both can be harvested at the same time. By using a
hierarchy of distributional norms we can deal with nested divergences
through an inductive procedure.
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Theorem (C. - Hairer)

For subcritical perturbations of the heat equation driven by noise no worse
than space-time white noise (with good cumulant bounds) there is a
renormalization scheme for the canonical model yielding renormalized
models Ẑ ✏ which for every ⌧ , and each p 2 N satisfy the bound

E

h���(⇧̂✏
0⌧)(✓0,�)

���
p

i
. �p(|⌧ |+) uniformly for �, ✏ small.

Thanks for listening!
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