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Definition and examples

Feynman graphs

A theory of Feynman graphs T is given by:

A set HE of types of half-edges, with an incidence rule,

that is to say an involutive map ι : HE −→ HE .

A set V of vertex types, that is to say a set of finite

multisets (in other words finite unordered sequences) of

elements of HE , of cardinality at least 3.

The edges of T are the multisets {t , ι(t)}, where t is an

element of HE . The set of edges of T is denoted by E .
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Definition and examples

QED

HEQED = { , , }.

Incidence rule:

←→ , ←→ .

Edges: and .

Only one vertex type:

= { , , }.
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Definition and examples

External structure

The external of a Feynman graph in FGT is the multiset of its

external half-edges.

We only allow Feynman graphs such that the external structure

is an edge or a vertex type of the theory T .

In QED

Three possible external structures:
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Definition and examples

ϕn, n ≥ 3

Eϕn = { }.

One edge, denoted by .

Only one vertex type, which is the multiset formed by n

copies of .
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Definition and examples

For n = 3:



Feynman graphs Bialgebras Dyson-Schwinger equations Main results

Definition and examples

QCD

HEQCD = { , , , , }.

Incidence rule:

←→ , ←→ ,

←→ .

Three edges, (gluon), (fermion) and

(ghost).

VQCD =

{

, , ,

}

.
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Combinatorial operations

Loop number

The loop number of a Feynman graph G is:

ℓ(G) = ♯{internal edges of G} − ♯{vertices of G}

+ ♯{connected components of G}.

As we only consider 1PI Feynman graphs, for all G 6= ∅,
ℓ(G) ≥ 1.
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Combinatorial operations

Extraction-contraction of a subgraph

−→



 ,
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Combinatorial operations

Insertion

→֒ : (6 times)

→֒ : (12 times)

→֒ : (12 times), (6 times)
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On Feynman graphs

The Connes-Kreimer bialgebra of Feynman graph of a given

theory T is denoted by HFG(T ).

A basis of HFG(T ) is the set of all Feynman graphs of the

theory.

The product is the disjoint union.

The unit is the empty Feynman graph.

Coproduct : for any Feynman graph G,

∆(G) =
∑

γ⊆G

γ ⊗G/γ.

Proposition

The bialgebra HFG(T ) is N-graded by the number of loops.
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On Feynman graphs

We put ∆̃(x) = ∆(x)− x ⊗ 1 + 1⊗ x .

In ϕ3

∆̃ = ⊗

∆̃ = 2 ⊗

∆̃ = ⊗
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On Feynman graphs

In QED

∆̃ = ⊗

∆̃ = ⊗

∆̃ = 2 ⊗
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On rooted trees

The Connes-Kreimer bialgebra of rooted trees is denoted by

HCK .

The set of rooted forests is a basis of HPR :

1, q, q q , q

q

, q q q , q

q

q , q

qq

∨ , q
q

q

,

q q q q , q

q

q q , q

q

q

q

, q

qq

∨ q , q
q

q

q , q

qq q

∨ , q
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q

∨ ,
q

qq

q

∨
, q
q

q

q

. . .

The product is the disjoint union of forests.
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On rooted trees

The coproduct is given by admissible cuts:

∆(t) =
∑

c admissible cut

Rc(t)⊗ Pc(t).

cut c q

qq

q

∨ q∨
qq

q

q∨
qq

q

q∨
qq

q

q∨
qq

q

q∨
qq

q

q∨
qq

q

q∨
qq

q

total

Admissible? yes yes yes yes no yes yes no yes

W c(t) q

qq

q

∨ q

q

q

q

q q

qq

∨ q

q

q

q q q q

q

q

q

q q q

q

q q q q q q q

qq

q

∨

Rc(t) q

qq

q

∨ q

q

q

qq

∨ q

q

q

× q q

q

× 1

Pc(t) 1 q

q

q q × q

q

q q q × q

qq

q

∨

∆( q

qq

q

∨ ) = 1⊗ q

qq

q

∨ + q

q

⊗ q

q

+ q⊗ q

qq

∨ + q⊗ q

q

q

+ q

q

q⊗ q+ q q⊗ q

q

+ q

qq

q

∨ ⊗1.
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On rooted trees

Decorated version: choose a set D of decorations. In HD
CK , the

vertices of rooted trees are decorated by elements of D.

∆( q

qq

q

∨d
cb

a

) = 1⊗ q

qq

q

∨d
cb

a

+ q

q

b
a ⊗ q

q

d
c + q a ⊗ q

qq

∨d
cb

+ q c ⊗ q

q

q

d
b
a

+ q

q

b
a
q c ⊗ q d + q a q c ⊗ q

q

d
b + q

qq

q

∨d
cb

a

⊗ 1.

Proposition

We choose a weight for each decoration d ∈ D. This induces a

graduation of the bialgebra HD
CK .
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On Feynman graphs

For each external structure (vertex or edge) i , we consider

Xi =
∑

G∈FG(T )i

αℓ(G)sGG,

where:

FG(T )i is the set of connected Feynman graphs of

external structure i .

sG is a symmetry factor.

α is an indeterminate (the coupling constant).

These elements lives in a completion of HFG(T ).
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On Feynman graphs

We put:

Xi =
∑

n≥1

αnXi(n).

Xi(n) is a span of Feynman graphs of external structure i with n

loops.

Questions

1 How to inductively describe the elements Xi(n)?

2 Is the subalgebra generated by the Xi(n) a subbialgebra of

HFG(T )?

3 If it is a subbialgebra, what can be said on it?

4 If it is not a subbialgebra, what can be done?
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On Feynman graphs

A graph G is primitive if it has no proper subgraphs:

∆(G) = G ⊗ 1 + 1⊗G.

For example, in φ3, the following graphs are primitive:

Any Feynman graph can be obtained by insertion of a graph in

a primitive Feynman graph.
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On Feynman graphs

Insertion operators

For any primitive Feynman graph G, for any graph γ, BG(γ) is

the average of the insertions of γ in G.

Note that is not always defined.
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On Feynman graphs

In φ3, two possible external structures, vertex v or edge e.

Xv =
∑

G primitive graph
of external structure v

αℓ(G)BG

(

(1 + Xv )
|Vert(G)|

(1− Xe)|Int(G)|

)

Xe =
∑

G primitive graph
of external structure e

αℓ(G)BG

(

(1 + Xv )
|Vert(G)|

(1− Xe)|Int(G)|

)



Feynman graphs Bialgebras Dyson-Schwinger equations Main results

On Feynman graphs

In φ3, two possible external structures, vertex 1 or edge 2.

X1 =
∑

G primitive graph
of external structure 1

αℓ(G)BG

(

(1 + X1)
|Vert(G)|

(1− X2)|Int(G)|

)

X2 =
∑

G primitive graph
of external structure 2

αℓ(G)BG

(

(1 + X1)
|Vert(G)|

(1− X2)|Int(G)|

)
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On Feynman graphs

In φ3, two possible external structures, vertex 1 or edge 2.

X1 =
∑

k≥1

αk
∑

G primitive graph
of external structure 1

with k loops

BG

(

(1 + X1)
3k

(1− X2)2k−1

)

X2 =
∑

k≥1

αk
∑

G primitive graph
of external structure 2

with k loops

BG

(

(1 + X1)
3k

(1− X2)3k−1

)
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On Feynman graphs

In QED, three possible external structures:

1 = 2 = 3 = .

X1 =
∑

k≥1

αk
∑

G∈P1(k)

BG

(

(1 + X1)
2k+1

(1 − X2)k (1− X3)2k

)

,

X2 =
∑

k≥1

αk
∑

G∈P2(k)

BG

(

(1 + X1)
2k

(1 − X2)k−1(1 − X3)2k

)

,

X3 =
∑

k≥1

αk
∑

G∈P3(k)

BG

(

(1 + X1)
2k

(1 − X2)k (1− X3)2k−1

)

.
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On Feynman graphs

Generally:

The vertex types of T are indexed by 1, . . . , k .

The edges of T are indexed by k + 1, . . . , k + l = M.

For any Feynman graph G:

vi(G) is the number if vertices of G of the i-th vertex type.

ej(G) is the number if internal edges of G of the j-th type.

Dyson-Schwinger system (ST ) associated to T

if 1 ≤ i ≤ k + l :

Xi =
∑

G∈Pi

αℓ(G)BG





k
∏

j=1

(1 + Xj)
vi (G)

k+l
∏

j=k+1

(1 − Xj)
−ej(G)



 .
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On rooted trees

Grafting operators

In HD
CK , if d ∈ D and F is a forest, Bd(F ) is the tree obtained by

grafting the trees of F on a common root decorated by d .

Bd( q
q

b
a
qc ) = q

qq

q

∨d
cb

a

.
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On rooted trees

Dyson-Schwinger systems on decorated rooted trees

D = D1 ⊔ . . . ⊔DM , fd ∈ K[[x1, . . . , xM ]] for all d ∈ D. Associated

system: for all i ∈ [M],

Yi =
∑

d∈Di

αweight(d)Bd(fd (Y1, . . . ,YM)).

Such a system has a unique solution Y = (Y1, . . . ,YM), living in

a completion of HD
CK .
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On rooted trees

System associated to a theory of Feynman graph T :

1 D is the set of primitive Feynman graphs of T .

2 For all 1 ≤ i ≤ M, Di is the set of primitive Feynman graphs

of external structure i .

If 1 ≤ i ≤ M:

Yi =
∑

d∈Di

αweight(d)Bd





k
∏

j=1

(1 + Yj)
vi (d)

k+l
∏

j=k+1

(1− Yj)
−ej (d)



 .
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On rooted trees

From trees to Feynman graphs

Let T be a theory of Feynman graphs and for all d ∈ D, let Gd

be a primitive Feynman graph. There exists a subspace H of

HD
CK and φ : H −→ HFG(T ), compatible with the product and

the coproduct, such that for all d ∈ D, φ ◦ Bd = BGd
◦ φ.

In the case where D is the set of primitive Feynman graphs of

T , φ is injective and for all 1 ≤ i ≤ M, φ(Yi) = Xi .

Proposition

The subalgebra generated by the components of Y1, . . . ,YM is

a subbialgebra of HD
CK if, and only if, the subalgebra generated

by the components of X1, . . . ,XM is a subbialgebra of HFG(T ).
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On rooted trees

Let (S) be a Dyson-Schwinger system in HD
CK .

Questions

1 Is the subalgebra generated by the components of

Y1, . . . ,Yn a subbialgebra of HD
CK ?

2 If it is a subbialgebra, what can be said on it?

3 If it is not a subbialgebra, what can be done?
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On rooted trees

In the case where there is a single grafting operator in each

equation (restricting to primitive Feynman graphs with one loop

only):
1 A classification of the systems giving a subbialgebra is

done:

1 Two main families of systems.
2 Four operations on these systems (rescaling,

concatenation, dilatation, extension).

2 For such a system, there exists a unique extension to a

system with an arbitrary number of grafting operators per

equation.

3 The description of the structure of the associated

subbialgebra is done in terms of a Lie algebra and a group.
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On rooted trees

Problem

The system for ϕn and for QED is such a system.

This is not the case for QCD.

Solution

Refine the graduation by the number of loops. This

N-graduation should be replaced by a NN-graduation, which

means that we replace the single coupling constant by N

coupling constants.
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Graduations on Feynman graphs

We look for NN-graduations of the bialgebra of Feynman graphs

HFG(T ) combinatorially defined using:

the number of vertices of each type.

The number of internal edges of each type.

The external structure.
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Graduations on Feynman graphs

For any Feynman graph G, we define vectors VG ∈ Nk and

SG ∈ Nk+l :

(VG)i = ♯{vertices of G of type i},

(SG)j = ♯{connected components of G of type j}.

Proposition

Such a graduation is given by a matrix C ∈ MN,k (Q) such that

for any Feynman graph G:

deg(G) = CVG − (C 0)SG.
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Graduations on Feynman graphs

The incidence matrix of the theory T is:

AT = (ae,v )e half edge of T ,v vertex type of T ,

where ae,v is the multiplicity of e in the multiset v .

AQED =





1

1

1



 AQCD =













1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

1 1 3 4













Aϕn = (n).

For the loop number:

C =
(1 . . . 1)AT

4
− (1 . . . 1).
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Graduations on Feynman graphs

Fixing such a matrix C, we now consider the system given by:

Dyson-Schwinger system (ST ) associated to T

if 1 ≤ i ≤ k + l :

Xi =
∑

G∈Pi

N
∏

i=1

α
degi(G)
i BG





k
∏

j=1

(1 + Xj)
vi (G)

k+l
∏

j=k+1

(1− Xj)
−ej (G)



 .

We put:

Xi =
∑

a∈NN

N
∏

i=1

αai

i Xi(a).

Is the subalgebra H(S) generated by the Xi(a) a subbialgebra?
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Classification

If a,b ∈ K, we denote by Fa,b(X ) the formal series:

Fa,b(X ) =
∞
∑

k=0

a(a− b) . . . (a− b(k − 1))

k!
X k

=

{

(1 + bX )
a
b if b 6= 0,

eaX if b = 0.

Let DM,N = [M]× NN
∗ . If (i ,a) ∈ DM,N , deg(i ,a) = a ∈ NN

∗ . We

fix:

1 Let [M] = I0 ⊔ . . . ⊔ Ik be a partition of [M], such that

I1, . . . , Ik 6= ∅.

2 A1, . . . ,Ak ∈ KN , b1, . . . ,bp ∈ K, and b
(i)
p ∈ K for all i ∈ I0

and p ∈ [k ].



Feynman graphs Bialgebras Dyson-Schwinger equations Main results

Classification

Theorem

We consider the system: ∀1 ≤ p ≤ M, ∀i ∈ Ip, ∀i ′ ∈ I0:

Xi =
∑

a∈NN
∗

αaB(i ,a)





k
∏

q=1

FAq ·a,bq





∑

j∈Iq

Xj







1 + bp

∑

j∈Ip

Xj







 ,

Xi ′ =
∑

a∈NN
∗

αaB(i ′,a)





k
∏

q=1

FAq ·a,bq





∑

j∈Iq

Xj





k
∏

q=1

F
b
(i′)
q ,bq





∑

j∈Iq

Xj







 .

The subalgebra generated by the components of the solution of

this system is a subbialgebra.
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Classification

Idea of the proof:

1 Introduce a family of prelie algebras.

2 Classify them.

3 See them as a quotient of free prelie algebras

(Chapoton-Livernet description).

4 Using the Oudom-Guin construction, see their enveloping

algebras as a quotients of Grossman-Larson algebras.

5 Dually, see the dual of their enveloping algebras as

subalgerbas of Connes-kreimer Hopf algebras.
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Back to Feynman graphs

We now consider a theory of Feynman graphs T with k vertex

types and l edges; M = k + l .

We give HFG(T ) a NN-graduation induced by a matrix

C ∈ MN,k (Q).

We consider the subalgebra H(S) generated by the

components of the solution of the system associated to T :

if 1 ≤ i ≤ k + l ,

Xi =
∑

G∈Pi

αdeg(G)BG





k
∏

j=1

(1 + Xj)
vi (G)

k+l
∏

j=k+1

(1− Xj)
−ej (G)



 .
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Back to Feynman graphs

Theorem

If rank(C) = k , then (S) is a system of the preceding form, with

parameters:

(A1 . . .Ak ) =

(

Ik 0

A′′ 0

)

bi = 0
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Back to Feynman graphs

If C ∈ GLk (Q), A′′ = −A′
T ∈ Ml ,k(Q), with:

(a′
T )i ,j =















ae,j

2
if the i-th edge is {e,e},

ae,j + ae′,j

2
if the i-th edge is {e,e′}, e 6= e′.

A′
QED =

(

1
1
2

)

A′
QCD =





1 0 0 0

0 1 0 0
1
2

1
2

3
2

2



 A′
ϕn =

(n

2

)

.



Feynman graphs Bialgebras Dyson-Schwinger equations Main results

Back to Feynman graphs

Question

What is the minimal rank m of C such that H(S) is a

subbialgebra?

We proved that m ≤ k , the number of vertex types of T .

For QED and ϕn, m = k = 1.

Proposition

For QCD, m = k = 4.

Idea of the proof: produce enough primitive QCD Feynman

graphs.
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Back to Feynman graphs

In QCD, we take:

C =









1 0 0 0

0 1 0 0
1
2

1
2

3
2 2

1
2

1
2

1
2 1









.

If G is a QCD Feynman graph, then:

deg(G) =



deg (G), deg (G), deg (G), ℓ(G)



 ,

where dege(G) is the number of internal and external edges of

type e.
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Associated groups

We fix a matrix B ∈ Mp,q(K). For all 1 ≤ i ≤ p:

Gi = {xi(1 + F ) | F ∈ K[[x1, . . . , xp, y1, . . . , yq ]]+}

⊆ K[[x1, . . . , xp, y1, . . . , yq ]]+.

Faà di Bruno group

Let GB = G1 × . . .×Gp ⊆ K[[x1, . . . , xp, y1, . . . , yq ]]
p, with the

product defined in the following way: if F = (F1, . . . ,Fp) and

G = (G1, . . . ,Gp) ∈ GB ,

F •G = G

(

F1, . . . ,Fp,

y1

(

F1
x1

)B1,1

. . .
(

Fp

xp

)B1,p

, . . . , yq

(

F1
x1

)Bq,1

. . .
(

Fp

xp

)Bq,p

)

.
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Associated groups

Module over GB

Let V0 be the group (K[[x1, . . . , xp, y1, . . . , yq ]]+,+). The group

GB acts by automorphisms on V0 by:

∀F ∈ GB, ∀P ∈ V0, F →֒ P = P

(

F , y

(

F

x

)B
)

.
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Associated groups

Group associated to a theory of Feynman graphs

If rank(C) = k , the bialgebra H(S) is isomorphic to the

coordinate algebra of the group:

V l
0 ⋊ GA′′ .
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Associated groups

Thank you
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