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Definition and examples

Feynman graphs

A theory of Feynman graphs 7 is given by:
@ A set HE of types of half-edges, with an incidence rule,
that is to say an involutive map ¢ : HE — HE.

@ A set V of vertex types, that is to say a set of finite
multisets (in other words finite unordered sequences) of
elements of H&, of cardinality at least 3.

The edges of 7 are the multisets {t, ()}, where t is an
element of HE. The set of edges of T is denoted by £.
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QED

@ Incidence rule:
AN AN e — —-— .
@ Edges: ~~~ and —»—.

@ Only one vertex type:

— oo~ —— —a— ).
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Definition and examples

External structure

The external of a Feynman graph in G is the multiset of its
external half-edges.

We only allow Feynman graphs such that the external structure
is an edge or a vertex type of the theory 7.

Three possible external structures:

L e =
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Definition and examples

® Epn = {— 1}
@ One edge, denoted by ——— .

@ Only one vertex type, which is the multiset formed by n
copies of
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For n = 3:
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Definition and examples

QCD

[+ HgQCD:{_>_7_<_7...»..7..4...7\QQ9J }

@ Incidence rule:

QO QW ——

- — - -

@ Three edges, QQQ, (gluon), —»— (fermion) and- - »--
(ghost).

(o ) )
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Combinatorial operations

Loop number
The loop number of a Feynman graph G is:

¢(G) = t{internal edges of G} — #{vertices of G}
+ t{connected components of G}.

As we only consider 1P/ Feynman graphs, for all G # 0,
(G) > 1.
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Combinatorial operations

Extraction-contraction of a subgraph
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Combinatorial operations

Insertion

(= %( @ (6 times)

%%—O— :~<%(12 times)
%(%%(: /{(12 times),%G times)
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On Feynman graphs

The Connes-Kreimer bialgebra of Feynman graph of a given
theory 7 is denoted by H z¢g(T)-

@ A basis of Hrg(7) is the set of all Feynman graphs of the
theory.

@ The product is the disjoint union.
@ The unit is the empty Feynman graph.
@ Coproduct : for any Feynman graph G,

A(G) =) v®G/r.

vCG

Proposition
The bialgebra H rg(r) is N-graded by the number of loops.
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On Feynman graphs

We put A(x) = A(x) —x®1+1®x.

3

In ¢
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On Feynman graphs

n QED
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On rooted trees

The Connes-Kreimer bialgebra of rooted trees is denoted by
@ The set of rooted forests is a basis of Hppg:

1,001,010, VL

TR TUUE S UV SO ) K/ Yi

@ The product is the disjoint union of forests.
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On rooted trees

@ The coproduct is given by admissible cuts:

A(t) = > Re(t) ® P°(t).

¢ admissible cut
cutc K/ L/ J{/ Kf jg/ ivL J@L ij total
Admissible? | yes | yes | yes |yes | no | yes |yes| no | yes
we(t) Vil v | bl o e |
Re(t) k/
Pe(t) 1 ! . . X | o] oo | x R/

! V ! X . ! X 1

A(K/):1® ViterreVi.elitot.ors Vol
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On rooted trees

Decorated version: choose a set D of decorations. In H#2,, the
vertices of rooted trees are decorated by elements of D.

a

A("k/f):1®bkff TR +..0 N

B PR L Ly

Proposition

We choose a weight for each decoration d € D. This induces a
graduation of the bialgebra HgK.
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On Feynman graphs

For each external structure (vertex or edge) i/, we consider

Xi = Z O/(G)SGG,
GeFG(T);

where:

@ FG(T);is the set of connected Feynman graphs of
external structure /.

® Sg is a symmetry factor.
@ « is an indeterminate (the coupling constant).
These elements lives in a completion of H zg(7).
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On Feynman graphs

We put:
X,‘ = Za”X,-(n).

n>1

Xi(n) is a span of Feynman graphs of external structure i/ with n
loops.

Questions

@ How to inductively describe the elements X;(n)?

Q s the subalgebra generated by the X;(n) a subbialgebra of
Hrgmn)?

@ If it is a subbialgebra, what can be said on it?

O If it is not a subbialgebra, what can be done?
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On Feynman graphs

A graph G is primitive if it has no proper subgraphs:
AG)=Ge1+12G.

For example, in ¢3, the following graphs are primitive:

_O_

Any Feynman graph can be obtained by insertion of a graph in
a primitive Feynman graph.
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On Feynman graphs

Insertion operators

For any primitive Feynman graph G, for any graph ~, Bg(v) is
the average of the insertions of v in G.
Note that is not always defined.
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On Feynman graphs

In 2, two possible external structures, vertex v or edge e.

|Vert(G)|
X, — Z 19 B (1+X)

1 — X,)lnt(G)|
G primitive graph ( e)
of external structure v

\Vert(G)|
_ «G) (1+X)

G primitive graph
of external structure e
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On Feynman graphs

In 2, two possible external structures, vertex 1 or edge 2.

| Vert(G)|
_ «G) (1+X)
X1 = > a*Bg (1 — Xp)[Int(G)]
G primitive graph
of external structure 1

|Vert(G))|
_ «G) (1+X1)
Xo = Z a™*Bg (1 — Xp) IO

G primitive graph
of external structure 2
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On Feynman graphs

In 3, two possible external structures, vertex 1 or edge 2.

14+ X )3
=Y S ()

k>1 G primitive graph
of external structure 1
with k loops
3k
_ K (1+X)
%= S Be(q—qhe
k>1 G primitive graph

of external structure 2
with k loops
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On Feynman graphs

In QED, three possible external structures:

B + X )2k+1
Yt 3 o)

k>1 GePy (k)

B (1 + X )2k
Xo=) ot 3. B ( Xz)k_1(11 - X3)2k> 7

k>1  GePs(k)

B (1 + X )2k
Xg = Zak Z BG( 1— X)k(1 1_X3)2k—1> :

k>1  GePs(k)
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On Feynman graphs

Generally:
@ The vertex types of 7 are indexed by 1,... k.
@ The edges of T areindexedby k+1,... . k+1=M.
For any Feynman graph G:
@ v;(G) is the number if vertices of G of the i-th vertex type.
@ ¢;(G) is the number if internal edges of G of the j-th type.

Dyson-Schwinger system (Sr) associated to 7
if1<i<k+1I:

k k+I1
Xi= Y a"98q (Hu +X)4@ [ (1 - &)ef@) .
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On rooted trees

Grafting operators

In H2,, if d € Dand F is a forest, By(F) is the tree obtained by
grafting the trees of F on a common root decorated by d.

By(18.c) = "K/d
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On rooted trees

Dyson-Schwinger systems on decorated rooted trees

D=Dyu...UDpy, fy € K[[Xq,...,xm]] forall d € D. Associated
system: for all i € [M],

Yi=Y a"9MIB(fy(Ys, ..., Yur))
deD;

Such a system has a unique solution Y = (Yi,..., Yu), living in
a completion of H2,.
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On rooted trees

System associated to a theory of Feynman graph 7
@ D is the set of primitive Feynman graphs of 7.

@ Forall1 << M, D;is the set of primitive Feynman graphs
of external structure /.

If1<i<M:

Kk k41
Y = Z aeighd) g | (H(1 + yj)v/(d) H (1- Y/_)e,(d)) '

deD; j=1 j=k+1
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On rooted trees

From trees to Feynman graphs

Let 7 be a theory of Feynman graphs and for all d € D, let Gy
be a primitive Feynman graph. There exists a subspace H of
’HgK and ¢ : H — H rg(1), compatible with the product and
the coproduct, such that for all d € D, ¢ o By = Bg, © ¢.

In the case where D is the set of primitive Feynman graphs of
T, ¢isinjective and forall 1 < i< M, ¢(Y;) = X,.

Proposition

The subalgebra generated by the components of Ys,..., Yy is
a subbialgebra of ”HgK if, and only if, the subalgebra generated
by the components of Xj, ..., Xy is a subbialgebra of H r¢ (7.
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On rooted trees

Let (S) be a Dyson-Schwinger system in ’HgK.

@ Is the subalgebra generated by the components of
Yi,..., Y, a subbialgebra of #2, ?

Q If it is a subbialgebra, what can be said on it?
@ If it is not a subbialgebra, what can be done?
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On rooted trees

In the case where there is a single grafting operator in each
equation (restricting to primitive Feynman graphs with one loop
only):
@ A classification of the systems giving a subbialgebra is
done:
@ Two main families of systems.
@ Four operations on these systems (rescaling,
concatenation, dilatation, extension).
@ For such a system, there exists a unique extension to a
system with an arbitrary number of grafting operators per
equation.

© The description of the structure of the associated
subbialgebra is done in terms of a Lie algebra and a group.
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On rooted trees

Problem

The system for " and for QED is such a system.
This is not the case for QCD.

Refine the graduation by the number of loops. This
N-graduation should be replaced by a NV-graduation, which
means that we replace the single coupling constant by N
coupling constants.
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Graduations on Feynman graphs

We look for NV-graduations of the bialgebra of Feynman graphs
H rg() combinatorially defined using:

@ the number of vertices of each type.
@ The number of internal edges of each type.
@ The external structure.
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Graduations on Feynman graphs

For any Feynman graph G, we define vectors V; € N and
Sg € Nk+:

(V)i = t{vertices of G of type i},
(Sg); = t{connected components of G of type j}.

Proposition

Such a graduation is given by a matrix C € My x(Q) such that
for any Feynman graph G:

deg(G) = CV — (C 0)Sq.
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Graduations on Feynman graphs

The incidence matrix of the theory 7 is:

Ar = (ae,v)e half edge of 7,v vertex type of 7>

where ae , is the multiplicity of e in the multiset v.

’
Agep = ( 1 ) Aacp =
1

For the loop number:

—_ OO = =
—_ - A O O
W o o oo
A OO OO

>

A

3>

Il

—
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Graduations on Feynman graphs

Fixing such a matrix C, we now consider the system given by:

Dyson-Schwinger system (S) associated to 7

if1<i<k+1I:
N e k k+1
X = Z Haieg,( )BG H(1 + X;)\i(@ H (1-Xx)"99 |
GeP; i=1 j=1 j=k+1
We put:

N
Xi=>_ [ x(a).

aeNN i=1

Is the subalgebra s generated by the X;j(a) a subbialgebra?
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Classification

If a, b € K, we denote by F, p(X) the formal series:

:iaa b)...(a— b(k —1)) vk

Kl
=0
~J (1 +bX) bifb+£0,
B eax if b=0.
Let Dy n = [M] x NN If (i, a) € Dy n, deg(i,a) = a< NN. We
fix:
@ Let[M] =l U...U I be a partition of [M], such that

Iyl # 0.
Q Ai,... . AccKN by,....bpc K, and by c Kforalli € Iy
and p € [k].
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Classification

We consider the system: V1 < p < M, Vi € Ip, Vi’ € Iy:

Xi= > a®Bq (H Faq b, (Zx) (1 +prX,~)) :

acNy j€lq J€lp
k

Z « B(,/ a) HFAqabq ZX HFbg,),bq Z)(/ .

acNN j€Elq g=1 j€Elq

The subalgebra generated by the components of the solution of
this system is a subbialgebra.

o
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Classification

ldea of the proof:

@ Introduce a family of prelie algebras.

@ Classify them.

© See them as a quotient of free prelie algebras
(Chapoton-Livernet description).

© Using the Oudom-Guin construction, see their enveloping
algebras as a quotients of Grossman-Larson algebras.

@ Dually, see the dual of their enveloping algebras as
subalgerbas of Connes-kreimer Hopf algebras.
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Back to Feynman graphs

We now consider a theory of Feynman graphs 7 with k vertex
types and / edges; M = k + |.

® We give H g a NN-graduation induced by a matrix
Ce MN,k(@)-
@ We consider the subalgebra #s) generated by the

components of the solution of the system associated to 7
if1<i<k+|,

GeP; j=k+1

X = Z adeg(G)BG (H + X;)Y (G) ﬁ e,(G)
J=1



Main results
[o] lelele]

Back to Feynman graphs

If rank(C) = k, then (S) is a system of the preceding form, with
parameters:

Ik 0
(A1...Ak):<A’§, o) b =0
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Back to Feynman graphs

If C € GLk(Q), A” = —A € M;4(Q), with:

a .
% if the i-th edge is {e, e},

(ar)ij=
Y Aej+ e j

2

) aco<1

if the i-th edge is {e, €'}, e # €.

/ _
o= (

o= =
= O
= = O
nw O O

8) A= (3)

2
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Back to Feynman graphs

What is the minimal rank m of C such that #s) is a
subbialgebra?

We proved that m < k, the number of vertex types of 7.
For QED and ", m=k = 1.

Proposition
For QCD, m = k = 4.

Idea of the proof: produce enough primitive QCD Feynman
graphs.
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Back to Feynman graphs

In QCD, we take:

1000

0100
C—

R

TTT oy

2 2 2

If Gis a QCD Feynman graph, then:

deg(G) = (deg (G), deg - (G), deg (G), E(G)) ,

where dege(G) is the number of internal and external edges of
type e.
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Associated groups

We fix a matrix B € Mp 4(K). Forall 1 </ < p:

G ={x(1+F)| FeK[[x,....,%,¥1,.- -, Yqll+}
QK[[XM---,XpaYH--->YQ]]+-

Faa di Bruno group

Let Gg = Gi x ... x Gp CK[[X1, ..., Xp, V4, - - -, YqlIP, with the
product defined in the following way: if F = (F4,..., Fp) and
G=(Gy,...,Gp) € Gp,

Fiy- .., Fpy
f’G: G( ¥ (j—;)B‘.’f. (%)B"",...,yq (f—;)B‘.”f. (f—g)s‘”’ >

-




Main results
[o] le]e}

Associated groups

Module over Gg

Let Vp be the group (K[[x1,...,Xp, 1, .-, ¥qll+, +). The group
G acts by automorphisms on V; by:

B
VF € Gg, VP ¢ VO,F<—>P:P<F,y<§> >
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Associated groups

Group associated to a theory of Feynman graphs

If rank(C) = k, the bialgebra 7 s, is isomorphic to the
coordinate algebra of the group:

Vé X GA//.
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Associated groups

Thank you
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