Feynman graphs

Bialgebras

Dyson-Schwinger equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Systems of Dyson-Schwinger equations with several coupling constants

Loïc Foissy

Berlin Potsdam 2016

Feynman graphs

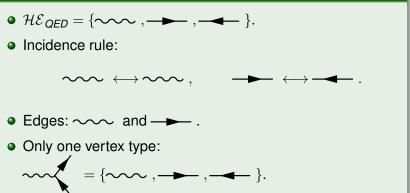
A theory of Feynman graphs \mathcal{T} is given by:

- A set *HE* of types of half-edges, with an incidence rule, that is to say an involutive map *ι* : *HE* → *HE*.
- A set V of vertex types, that is to say a set of finite multisets (in other words finite unordered sequences) of elements of HE, of cardinality at least 3.

The edges of \mathcal{T} are the multisets $\{t, \iota(t)\}$, where *t* is an element of \mathcal{HE} . The set of edges of \mathcal{T} is denoted by \mathcal{E} .

・ロト・日本・日本・日本・日本

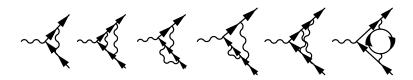
Feynman graphs o●oooooooooo	Bialgebras 000000	Dyson-Schwinger equations	Main results
Definition and examples			



Dyson-Schwinger equations

Main results

Definition and examples



Feynman	graphs
000000	000000

Dyson-Schwinger equations

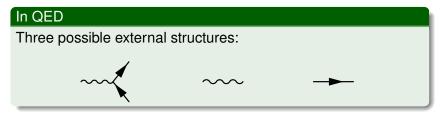
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Definition and examples

External structure

The external of a Feynman graph in $\mathcal{FG}_{\mathcal{T}}$ is the multiset of its external half-edges.

We only allow Feynman graphs such that the external structure is an edge or a vertex type of the theory \mathcal{T} .



▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition and examples

$\varphi^n, n \ge 3$

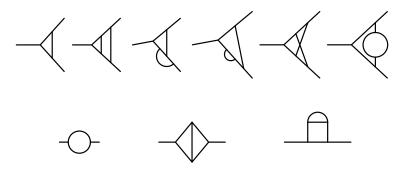
- $\mathcal{E}_{\varphi^n} = \{-----\}.$
- One edge, denoted by .
- Only one vertex type, which is the multiset formed by n copies of _____.

Feynman	graphs
00000	000000

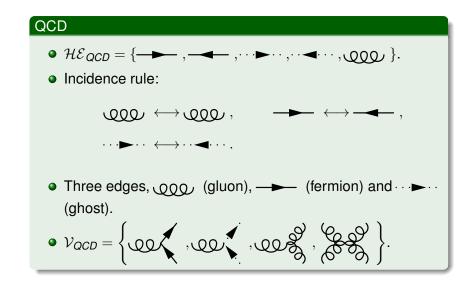
Dyson-Schwinger equations

Definition and examples

For *n* = 3:



Feynman graphs	Bialgebras 000000	Dyson-Schwinger equations	Main results
Definition and examples			



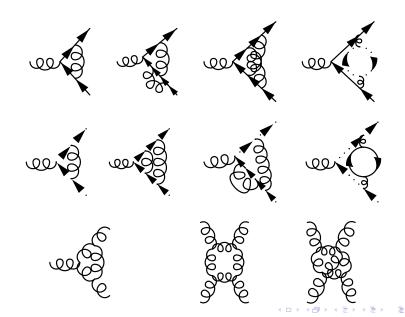
Feynman graphs

Bialgebras

Dyson-Schwinger equations

Main results

Definition and examples

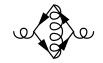


୍ରର୍ବ

Dyson-Schwinger equations

Main results

Definition and examples



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Combinatorial operations

Loop number

The loop number of a Feynman graph G is:

 $\ell(G) = \#\{\text{internal edges of } G\} - \#\{\text{vertices of } G\} + \#\{\text{connected components of } G\}.$

As we only consider 1*PI* Feynman graphs, for all $G \neq \emptyset$, $\ell(G) \ge 1$.

・ロト・西ト・西ト・日・ 日・

Feynman graphs

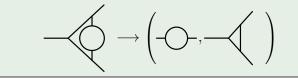
Bialgebras

Dyson-Schwinger equations

Main results

Combinatorial operations

Extraction-contraction of a subgraph

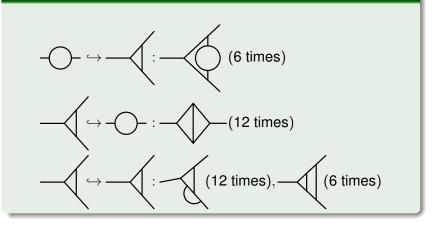


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Dyson-Schwinger equations

Combinatorial operations

Insertion



Feynman graphs	Bialgebras ●ooooo	Dyson-Schwinger equations	Main results

The Connes-Kreimer bialgebra of Feynman graph of a given theory \mathcal{T} is denoted by $\mathcal{H}_{\mathcal{FG}(\mathcal{T})}$.

- A basis of H_{FG(T)} is the set of all Feynman graphs of the theory.
- The product is the disjoint union.
- The unit is the empty Feynman graph.
- Coproduct : for any Feynman graph G,

$$\Delta(G) = \sum_{\gamma \subseteq G} \gamma \otimes G/\gamma.$$

Proposition

The bialgebra $\mathcal{H}_{\mathcal{FG}(\mathcal{T})}$ is \mathbb{N} -graded by the number of loops.

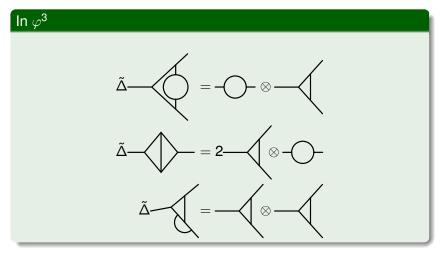
Feynman graphs

Bialgebras o●oooo Dyson-Schwinger equations

Main results

On Feynman graphs

We put
$$ilde{\Delta}(x) = \Delta(x) - x \otimes 1 + 1 \otimes x.$$



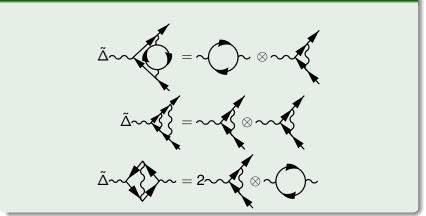
▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Feynman	graphs
000000	000000

Bialgebras 00●000 Dyson-Schwinger equations

On Feynman graphs

In QED



▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
00000000000	000000	000000000000000000000000000000000000000	000000000000
On rooted trees			

The Connes-Kreimer bialgebra of rooted trees is denoted by $\mathcal{H}_{\textit{CK}}.$

• The set of rooted forests is a basis of \mathcal{H}_{PR} :

$$1,...,1,...,1,...,V,H,$$

....,1..,11, V.,H., Ψ, V, Y, H ...

• The product is the disjoint union of forests.

Feynman graphs	Bialgebras ○○○○●○	Dyson-Schwinger equations	Main results
On rooted trees			

• The coproduct is given by *admissible cuts*:

$$\Delta(t) = \sum_{c \text{ admissible cut}} R^{c}(t) \otimes P^{c}(t).$$

cut c	V	Ţ	⁺∕	Ι.Υ-	ţ	<u>.</u>	₩.	† .∕	total
Admissible?	yes	yes	yes	yes	no	yes	yes	no	yes
<i>W^c</i> (<i>t</i>)	V	11	. V	H.	1	I	1	••••	Į.
$R^{c}(t)$	V	I	V	Ŧ	×	•	I	×	1
$P^{c}(t)$	1	I	•	•	×	1.	••	×	Γ.

 $\Delta(\stackrel{I}{\vee}) = 1 \otimes \stackrel{I}{\vee} + 1 \otimes 1 + . \otimes \stackrel{V}{\vee} + . \otimes \stackrel{I}{\cdot} + 1 \otimes . + . \otimes 1 + \stackrel{I}{\vee} \otimes 1.$

Feynman graphs	Bialgebras ○○○○○●	Dyson-Schwinger equations	Main results
On rooted trees			

Decorated version: choose a set *D* of decorations. In \mathcal{H}_{CK}^{D} , the vertices of rooted trees are decorated by elements of *D*.

$$\Delta(\overset{a}{\mathbb{V}_{d}^{c}}) = 1 \otimes \overset{a}{\mathbb{V}_{d}^{c}} + \mathfrak{l}_{b}^{a} \otimes \mathfrak{l}_{d}^{c} + \mathfrak{s}_{a} \otimes \overset{b}{\mathbb{V}_{d}^{c}} + \mathfrak{s}_{d} \otimes \mathfrak{l}_{d}^{c} + \mathfrak{s}_{d} \otimes \mathfrak{s}_{d}^{c} + \mathfrak{s}_{d} \otimes \mathfrak{s}_{d}^{c} + \mathfrak{s}_{d} \otimes \mathfrak{s}_{d}^{c} \otimes \mathfrak{s}_{d}^{c} + \mathfrak{s}_{d} \otimes \mathfrak{s}_{d}^{c} \otimes \mathfrak{s$$

Proposition

We choose a weight for each decoration $d \in D$. This induces a graduation of the bialgebra \mathcal{H}^{D}_{CK} .

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
00000000000	000000	000000000000000000000000000000000000000	000000000000
On Feynman graphs			

For each external structure (vertex or edge) *i*, we consider

$$X_i = \sum_{G \in \mathcal{FG}(\mathcal{T})_i} lpha^{\ell(G)} s_G G,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

where:

- *FG*(*T*)_{*i*} is the set of connected Feynman graphs of external structure *i*.
- s_G is a symmetry factor.
- α is an indeterminate (the coupling constant).

These elements lives in a completion of $\mathcal{H}_{\mathcal{FG}(\mathcal{T})}$.

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
On Feynman graphs			

We put:

$$X_i = \sum_{n \ge 1} \alpha^n X_i(n).$$

 $X_i(n)$ is a span of Feynman graphs of external structure *i* with *n* loops.

Questions

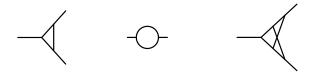
- How to inductively describe the elements $X_i(n)$?
- Is the subalgebra generated by the X_i(n) a subbialgebra of H_{FG(T)}?
- If it is a subbialgebra, what can be said on it?
- If it is not a subbialgebra, what can be done?

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
		000000000000000000000000000000000000000	
On Feynman graphs			

A graph *G* is primitive if it has no proper subgraphs:

$$\Delta(G) = G \otimes 1 + 1 \otimes G.$$

For example, in ϕ^3 , the following graphs are primitive:



Any Feynman graph can be obtained by insertion of a graph in a primitive Feynman graph.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Feynman graphs

Bialgebras

Dyson-Schwinger equations

On Feynman graphs

Insertion operators

For any primitive Feynman graph *G*, for any graph γ , $B_G(\gamma)$ is the average of the insertions of γ in *G*. Note that is not always defined.

▲ロト▲御▶▲臣▶▲臣▶ ■ のQの

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
		000000000000000000000000000000000000000	
On Feynman graphs			

In ϕ^3 , two possible external structures, vertex v or edge e.

$$X_{v} = \sum_{\substack{G \text{ primitive graph} \\ \text{of external structure } v}} \alpha^{\ell(G)} B_{G} \left(\frac{(1 + X_{v})^{|Vert(G)|}}{(1 - X_{e})^{|Int(G)|}} \right)$$
$$X_{e} = \sum_{\substack{G \text{ primitive graph} \\ \text{of external structure } e}} \alpha^{\ell(G)} B_{G} \left(\frac{(1 + X_{v})^{|Vert(G)|}}{(1 - X_{e})^{|Int(G)|}} \right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
		000000000000000000000000000000000000000	
On Feynman graphs			

In ϕ^3 , two possible external structures, vertex 1 or edge 2.

$$X_{1} = \sum_{\substack{G \text{ primitive graph} \\ \text{of external structure 1}}} \alpha^{\ell(G)} B_{G} \left(\frac{(1 + X_{1})^{|Vert(G)|}}{(1 - X_{2})^{|Int(G)|}} \right)$$
$$X_{2} = \sum_{\substack{G \text{ primitive graph} \\ \text{of external structure 2}}} \alpha^{\ell(G)} B_{G} \left(\frac{(1 + X_{1})^{|Vert(G)|}}{(1 - X_{2})^{|Int(G)|}} \right)$$

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Main results
		000000000000000000000000000000000000000	
On Feynman graphs			

In ϕ^3 , two possible external structures, vertex 1 or edge 2.

$$X_{1} = \sum_{k \ge 1} \alpha^{k} \sum_{\substack{G \text{ primitive graph} \\ \text{of external structure 1} \\ \text{with } k \text{ loops}}} B_{G}\left(\frac{(1+X_{1})^{3k}}{(1-X_{2})^{2k-1}}\right)$$
$$X_{2} = \sum_{k \ge 1} \alpha^{k} \sum_{\substack{G \text{ primitive graph} \\ \text{of external structure 2} \\ \text{with } k \text{ loops}}} B_{G}\left(\frac{(1+X_{1})^{3k}}{(1-X_{2})^{3k-1}}\right)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

,

Dyson-Schwinger equations

Main results

On Feynman graphs

In QED, three possible external structures:

$$1 = 2 = 2 = 3 = -$$

$$X_{1} = \sum_{k \ge 1} \alpha^{k} \sum_{G \in P_{1}(k)} B_{G} \left(\frac{(1+X_{1})^{2k+1}}{(1-X_{2})^{k}(1-X_{3})^{2k}} \right),$$

$$X_{2} = \sum_{k \ge 1} \alpha^{k} \sum_{G \in P_{2}(k)} B_{G} \left(\frac{(1+X_{1})^{2k}}{(1-X_{2})^{k-1}(1-X_{3})^{2k}} \right),$$

$$X_{3} = \sum_{k \ge 1} \alpha^{k} \sum_{G \in P_{3}(k)} B_{G} \left(\frac{(1+X_{1})^{2k}}{(1-X_{2})^{k}(1-X_{3})^{2k-1}} \right).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Feynman graphs	Bialgebras 000000	Dyson-Schwinger equations	Main results
On Feynman graphs			

Generally:

- The vertex types of \mathcal{T} are indexed by $1, \ldots, k$.
- The edges of \mathcal{T} are indexed by $k + 1, \ldots, k + l = M$.

For any Feynman graph G:

- $v_i(G)$ is the number if vertices of *G* of the *i*-th vertex type.
- $e_j(G)$ is the number if internal edges of G of the *j*-th type.

Dyson-Schwinger system ($S_{\mathcal{T}}$) associated to \mathcal{T}

if $1 \le i \le k + I$:

$$X_{i} = \sum_{G \in P_{i}} \alpha^{\ell(G)} B_{G} \left(\prod_{j=1}^{k} (1 + X_{j})^{\nu_{i}(G)} \prod_{j=k+1}^{k+l} (1 - X_{j})^{-e_{j}(G)} \right)$$

Dyson-Schwinger equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

On rooted trees

Grafting operators

In \mathcal{H}_{CK}^{D} , if $d \in D$ and F is a forest, $B_d(F)$ is the tree obtained by grafting the trees of F on a common root decorated by d.

$$B_d(\mathfrak{l}_b^a,\mathfrak{c}) = \bigvee_{d}^{a} V_d^c.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Dyson-Schwinger systems on decorated rooted trees

 $D = D_1 \sqcup \ldots \sqcup D_M$, $f_d \in \mathbb{K}[[x_1, \ldots, x_M]]$ for all $d \in D$. Associated system: for all $i \in [M]$,

$$Y_i = \sum_{d \in D_i} \alpha^{weight(d)} B_d(f_d(Y_1, \ldots, Y_M)).$$

Such a system has a unique solution $Y = (Y_1, ..., Y_M)$, living in a completion of \mathcal{H}^D_{CK} .

System associated to a theory of Feynman graph \mathcal{T} :

- It is the set of primitive Feynman graphs of T.
- **2** For all $1 \le i \le M$, D_i is the set of primitive Feynman graphs of external structure *i*.

If $1 \leq i \leq M$:

$$Y_{i} = \sum_{d \in D_{i}} \alpha^{weight(d)} B_{d} \left(\prod_{j=1}^{k} (1+Y_{j})^{v_{i}(d)} \prod_{j=k+1}^{k+l} (1-Y_{j})^{-e_{j}(d)} \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dyson-Schwinger equations

From trees to Feynman graphs

Let \mathcal{T} be a theory of Feynman graphs and for all $d \in D$, let G_d be a primitive Feynman graph. There exists a subspace H of \mathcal{H}_{CK}^D and $\phi : H \longrightarrow \mathcal{H}_{\mathcal{FG}(\mathcal{T})}$, compatible with the product and the coproduct, such that for all $d \in D$, $\phi \circ B_d = B_{G_d} \circ \phi$.

In the case where *D* is the set of primitive Feynman graphs of \mathcal{T} , ϕ is injective and for all $1 \le i \le M$, $\phi(Y_i) = X_i$.

Proposition

The subalgebra generated by the components of Y_1, \ldots, Y_M is a subbialgebra of \mathcal{H}_{CK}^D if, and only if, the subalgebra generated by the components of X_1, \ldots, X_M is a subbialgebra of $\mathcal{H}_{\mathcal{FG}(\mathcal{T})}$.

・ロト・日本・日本・日本・日本

Let (S) be a Dyson-Schwinger system in \mathcal{H}_{CK}^{D} .

Questions

- Is the subalgebra generated by the components of Y₁,..., Y_n a subbialgebra of H^D_{CK}?
- If it is a subbialgebra, what can be said on it?
- If it is not a subbialgebra, what can be done?

In the case where there is a single grafting operator in each equation (restricting to primitive Feynman graphs with one loop only):

- A classification of the systems giving a subbialgebra is done:
 - Two main families of systems.
 - Four operations on these systems (rescaling, concatenation, dilatation, extension).
- For such a system, there exists a unique extension to a system with an arbitrary number of grafting operators per equation.
- The description of the structure of the associated subbialgebra is done in terms of a Lie algebra and a group.

Dyson-Schwinger equations

・ロト・日本・日本・日本・日本

Problem

The system for φ^n and for *QED* is such a system. This is not the case for QCD.

Solution

Refine the graduation by the number of loops. This \mathbb{N} -graduation should be replaced by a \mathbb{N}^N -graduation, which means that we replace the single coupling constant by N coupling constants.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Graduations on Feynman graphs

We look for \mathbb{N}^N -graduations of the bialgebra of Feynman graphs $\mathcal{H}_{\mathcal{FG}(\mathcal{T})}$ combinatorially defined using:

- the number of vertices of each type.
- The number of internal edges of each type.
- The external structure.

For any Feynman graph *G*, we define vectors $V_G \in \mathbb{N}^k$ and $S_G \in \mathbb{N}^{k+l}$:

 $(V_G)_i = \# \{ \text{vertices of } G \text{ of type } i \},\$ $(S_G)_i = \# \{ \text{connected components of } G \text{ of type } j \}.$

Proposition

Such a graduation is given by a matrix $C \in M_{N,k}(\mathbb{Q})$ such that for any Feynman graph *G*:

$$deg(G) = CV_G - (C 0)S_G.$$

Feynman graphs

Bialgebras

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Graduations on Feynman graphs

The incidence matrix of the theory ${\cal T}$ is:

 $A_{\mathcal{T}} = (a_{e,v})_{e}$ half edge of \mathcal{T}, v vertex type of $\mathcal{T},$

where $a_{e,v}$ is the multiplicity of *e* in the multiset *v*.

$$A_{QED} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad A_{QCD} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 3 & 4 \end{pmatrix} \quad A_{\varphi^n} = (n).$$

For the loop number:

$$C=\frac{(1\ldots 1)A_{\mathcal{T}}}{4}-(1\ldots 1).$$

Dyson-Schwinger equations

Main results

Graduations on Feynman graphs

Fixing such a matrix C, we now consider the system given by:

Dyson-Schwinger system $(S_{\mathcal{T}})$ associated to \mathcal{T} if $1 \le i \le k + l$: $\sum_{k=1}^{N} dig(G) = \left(\sum_{k=1}^{k} e^{-ig(G)} \sum_{k=1}^{k+l} e^{-ig(G)}\right)$

$$X_{i} = \sum_{G \in P_{i}} \prod_{i=1}^{n} \alpha_{i}^{deg_{i}(G)} B_{G} \left(\prod_{j=1}^{n} (1+X_{j})^{v_{i}(G)} \prod_{j=k+1}^{n} (1-X_{j})^{-e_{j}(G)} \right).$$

We put:

$$X_i = \sum_{\boldsymbol{a} \in \mathbb{N}^N} \prod_{i=1}^N \alpha_i^{\boldsymbol{a}_i} X_i(\boldsymbol{a}).$$

Is the subalgebra $\mathcal{H}_{(S)}$ generated by the $X_i(a)$ a subbialgebra?

Feynman	graphs
000000	200000

Dyson-Schwinger equations

Classification

If $a, b \in \mathbb{K}$, we denote by $F_{a,b}(X)$ the formal series:

$$F_{a,b}(X) = \sum_{k=0}^{\infty} \frac{a(a-b)\dots(a-b(k-1))}{k!} X^k$$
$$= \begin{cases} (1+bX)^{\frac{a}{b}} \text{ if } b \neq 0, \\ e^{aX} \text{ if } b = 0. \end{cases}$$

Let $D_{M,N} = [M] \times \mathbb{N}^N_*$. If $(i, a) \in D_{M,N}$, $deg(i, a) = a \in \mathbb{N}^N_*$. We fix:

- Let $[M] = I_0 \sqcup \ldots \sqcup I_k$ be a partition of [M], such that $I_1, \ldots, I_k \neq \emptyset$.
- ② $A_1, \ldots, A_k \in \mathbb{K}^N$, $b_1, \ldots, b_p \in \mathbb{K}$, and $b_p^{(i)} \in \mathbb{K}$ for all $i \in I_0$ and $p \in [k]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Dyson-Schwinger equations

Theorem

We consider the system: $\forall 1 \leq p \leq M, \forall i \in I_p, \forall i' \in I_0$:

$$\begin{split} X_{i} &= \sum_{\boldsymbol{a} \in \mathbb{N}_{*}^{N}} \alpha^{\boldsymbol{a}} B_{(i,\boldsymbol{a})} \left(\prod_{q=1}^{k} F_{A_{q} \cdot \boldsymbol{a}, b_{q}} \left(\sum_{j \in I_{q}} X_{j} \right) \left(1 + b_{p} \sum_{j \in I_{p}} X_{j} \right) \right), \\ X_{i'} &= \sum_{\boldsymbol{a} \in \mathbb{N}_{*}^{N}} \alpha^{\boldsymbol{a}} B_{(i',\boldsymbol{a})} \left(\prod_{q=1}^{k} F_{A_{q} \cdot \boldsymbol{a}, b_{q}} \left(\sum_{j \in I_{q}} X_{j} \right) \prod_{q=1}^{k} F_{b_{q}^{(i')}, b_{q}} \left(\sum_{j \in I_{q}} X_{j} \right) \right) \end{split}$$

The subalgebra generated by the components of the solution of this system is a subbialgebra.

Idea of the proof:

- Introduce a family of prelie algebras.
- Classify them.
- See them as a quotient of free prelie algebras (Chapoton-Livernet description).
- Using the Oudom-Guin construction, see their enveloping algebras as a quotients of Grossman-Larson algebras.
- Dually, see the dual of their enveloping algebras as subalgerbas of Connes-kreimer Hopf algebras.

We now consider a theory of Feynman graphs T with k vertex types and l edges; M = k + l.

- We give $\mathcal{H}_{\mathcal{FG}(\mathcal{T})}$ a \mathbb{N}^N -graduation induced by a matrix $C \in M_{N,k}(\mathbb{Q})$.
- We consider the subalgebra *H*(*S*) generated by the components of the solution of the system associated to *T*: if 1 ≤ *i* ≤ *k* + *l*,

$$X_{i} = \sum_{G \in P_{i}} \alpha^{deg(G)} B_{G} \left(\prod_{j=1}^{k} (1+X_{j})^{v_{i}(G)} \prod_{j=k+1}^{k+l} (1-X_{j})^{-e_{j}(G)} \right).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Back to Feynman graphs

Theorem

If rank(C) = k, then (S) is a system of the preceding form, with parameters:

$$(A_1 \ldots A_k) = \begin{pmatrix} I_k & 0 \\ A'' & 0 \end{pmatrix} \qquad \qquad b_i = 0$$

・ロト・西・・田・・田・・日・

Feynman graphs	Bialgebras

Back to Feynman graphs

If
$$\mathcal{C}\in GL_k(\mathbb{Q}),$$
 $\mathcal{A}''=-\mathcal{A}'_{\mathcal{T}}\in \mathcal{M}_{l,k}(\mathbb{Q}),$ with:

$$(a'_{\mathcal{T}})_{i,j} = \begin{cases} rac{a_{e,j}}{2} ext{ if the } i ext{-th edge is } \{e, e\}, \\ rac{a_{e,j} + a_{e',j}}{2} ext{ if the } i ext{-th edge is } \{e, e'\}, e \neq e'. \end{cases}$$

$$\mathcal{A}'_{QED} = \left(egin{array}{c} 1 \ rac{1}{2} \end{array}
ight) \quad \mathcal{A}'_{QCD} = \left(egin{array}{c} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ rac{1}{2} & rac{1}{2} & rac{3}{2} & 2 \end{array}
ight) \quad \mathcal{A}'_{arphi^n} = \left(rac{n}{2}
ight).$$

Back to Feynman graphs		
Feynman graphs	Bialgebras	Dyson-Schwinger equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Question

What is the minimal rank *m* of *C* such that $\mathcal{H}_{(S)}$ is a subbialgebra?

We proved that $m \le k$, the number of vertex types of \mathcal{T} . For *QED* and φ^n , m = k = 1.

Proposition

For QCD, m = k = 4.

Idea of the proof: produce enough primitive QCD Feynman graphs.

Feynman graphs	Bialgebras	Dyson-Schwinger equations	Μ

Back to Feynman graphs

In QCD, we take:

$$C=\left(egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ rac{1}{2} & rac{1}{2} & rac{3}{2} & 2 \ rac{1}{2} & rac{1}{2} & rac{1}{2} & 1 \end{array}
ight)$$

.

If G is a QCD Feynman graph, then:

$$deg(G) = \begin{pmatrix} deg \\ - \bullet \\$$

where $deg_e(G)$ is the number of internal and external edges of type *e*.

Dyson-Schwinger equations

Main results

Associated groups

We fix a matrix $B \in M_{p,q}(\mathbb{K})$. For all $1 \le i \le p$:

$$\mathbf{G}_i = \{x_i(1+F) \mid F \in \mathbb{K}[[x_1, \dots, x_p, y_1, \dots, y_q]]_+\}$$
$$\subseteq \mathbb{K}[[x_1, \dots, x_p, y_1, \dots, y_q]]_+.$$

Faà di Bruno group

Let $\mathbf{G}_B = \mathbf{G}_1 \times \ldots \times \mathbf{G}_p \subseteq \mathbb{K}[[x_1, \ldots, x_p, y_1, \ldots, y_q]]^p$, with the product defined in the following way: if $F = (F_1, \ldots, F_p)$ and $G = (G_1, \ldots, G_p) \in \mathbf{G}_B$,

$$F \bullet G = G \left(\begin{array}{c} F_1, \dots, F_p, \\ y_1 \left(\frac{F_1}{x_1} \right)^{B_{1,1}} \cdots \left(\frac{F_p}{x_p} \right)^{B_{1,p}}, \dots, y_q \left(\frac{F_1}{x_1} \right)^{B_{q,1}} \cdots \left(\frac{F_p}{x_p} \right)^{B_{q,p}} \end{array} \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Dyson-Schwinger equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Associated groups

Module over G_B

Let V_0 be the group $(\mathbb{K}[[x_1, \ldots, x_p, y_1, \ldots, y_q]]_+, +)$. The group **G**_{*B*} acts by automorphisms on V_0 by:

$$\forall F \in \mathbf{G}_{B}, \ \forall P \in V_{0}, \ F \hookrightarrow P = P\left(F, y\left(\frac{F}{x}\right)^{B}\right).$$

Dyson-Schwinger equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Associated groups

Group associated to a theory of Feynman graphs

If rank(C) = k, the bialgebra $\mathcal{H}_{(S)}$ is isomorphic to the coordinate algebra of the group:

 $V_0^{\prime} \rtimes G_{A^{\prime\prime}}.$

Feynman graphs

Bialgebras

Dyson-Schwinger equations

Main results

Associated groups

Thank you