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Stochastic PDEs

» Kardar-Parisi-Zhang
Och = 02h + (0xh)® + ¢

» Dynamical &%
Orp =D — ¢ +¢

» SPDE with multiplicative noise (has Ité solution)

Oru = O2u+ H(u) + G(u)¢
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Stochastic PDEs: renormalization

Orh = 92h + (Oxh)?> + ¢
Orp =N — ¢ + ¢
O = 02u + H(u) + G(u)¢

To define solutions:

1) Replace & by &, a sequence of smooth Gaussian fields.

2) Ase — 0, & — £. However, the smooth solutions do not
converge. - Therefore needs renormalization (add counter-terms).
3) Take limit € — 0 with counter-terms.
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Stochastic PDEs: renormalization

Dth = 02h + (0xh)? + ¢
Orp = D — ¢° +¢
Oru = OFu+ H(u) + G(u)¢
Q: How about Non-Gaussian approximation (. — &7
1) Assuming (. is mixing, (. — & as € — 0 by standard CLT.
2) However, the smooth solutions (for noises ¢.) do not converge,
even with the above renormalization!

3) Needs extra renormalization (counter-terms) due to
non-Gaussianity.
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More concrete assumptions on the noise

We consider the following general class of Non-Gaussian noises.

> (. is rescaled field of (:
(e = e P((x/e, t/e?)

where ( satisfies:

» Mixing: ¢(z) and ¢(z’) are independent whenever |z — 2’| > 1.
(Or, dependence decays exponentially on scale O(1).)

» Bounded moments.

» Continuity / Smoothness.

» Stationary and centered.
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Result 1: (non-standard) CLT for KPZ
(Hairer & S. 2015)

aths = 8)2<hs + (axhz-:)2 + Cs
where (. is non-Gaussian. Then
he(x — Vhort, t) — V\Eizt — h

h is the same solution to KPZ with (Gaussian) white noise; the
speeds Vpor, v§22 depend on the first four cumulants of ¢ explicitly.

> (Hairer & Quastel 2015, Gubinelli & Perkowski 2016):
polynomial nonlinearities in 0y h - universality result.

» General continuous growth models
Orh = smoothing+lateral growth (i.e.interaction)+randomness

should scale to KPZ (under “weak asymmetry assumption”).
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Result 2: Universality of Phi4 3

(S. & Xu 2016) A general class of phase coexistence models:
Oru=Au+eV'(u)+¢

1 " . "
Rescale u.(x,t) = e 2u(e~'x,e72t). Under “pitchfork
assumption, u. converges to solution of

Oeu=Au—ud+¢

» (Hairer & Xu 2016) proved universality for gaussian case.
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Result 3: Wong-Zakai theorem
> (A result in stochastic analysis)
dX; = H(X)dt + G(X;)dB
B. — B, has to subtract 3G'(X.)G(X.) to obtain It5 limit.
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Result 3: Wong-Zakai theorem
> (A result in stochastic analysis)

B. — B, has to subtract 3G'(X.)G(X.) to obtain It5 limit.
> (Hairer & Pardoux 2014) Approximating It solution to

Oru = 02u + H(u) + G(u)¢
Let & be smooth Gaussian, & — €.
Orue =03ue + H(u:)—c oG/ (1) G (ue)
—a16'(u:)>6(u:) — 26" (1) 6 (u:) G (u:)* + G(ue):
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Result 3: Wong-Zakai theorem
> (A result in stochastic analysis)
dX; = H(X)dt + G(X;)dB
B. — B, has to subtract 3G'(X.)G(X.) to obtain It5 limit.
> (Hairer & Pardoux 2014) Approximating It solution to
Oru = O2u+ H(u) + G(u)¢
Let & be smooth Gaussian, & — €.
Oru. =02u. + H(u:)—e 1coG' (1) G(u.)
—a1G' ()’ G(u:) — 26" (ue) G’ (u=) G(u:)* + G(u:)ée

» (Chandra & S. in progress) Let (. be smooth non-Gaussian

Ot Uy :afus + H(u:)—Hi(uz)—Ho(u:) + G(ue) (e

Hi(u:) = —e Y0 G’ (1) G(ue)—e 2 ¢ G/ (1:)? G (ue)—e 2 ¢ G" (1) G(ue)?
Ha(u) = =G (u)G(u)® — PG (u)*G(u) — G (1) G (u)G(u)?
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Perturbative solutions

Bep = D — NP> +&
Let¢:¢o+)\gf)1+)\2¢2... Then

Otpo = Do + ¢

O = D1 — B3

Let P = (9 — A)~L. Solve them: ¢g = P&, 1 = —P * (¢3), etc.

—o + A /304-3)\2 //
N NN
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Correlation (Gaussian noise)

O\T/O O\T/O each copy = /(H heat kernels)¢(x1)¢(x2)¢(x3)

Wick theorem:

EJQIcean = > I ECE)<)

i€A pairingsn (ij)em

Qﬁ@@

One of the pairings:
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Correlation (Gaussian noise)

Wiener chaos decomposition (X3 = (X3 — 3X) + 3X)

C(a)C0x)C(x3) = :((x1)C(x2)¢(x3):
+ E(C(x1)¢(x2)) :¢(x3): +E(C(x1)C(x3)) :¢(x2): +E(C(x2)¢(x3)) :C(x1):
In general,

n

[T¢Ga)=> eIt It

i=1 A €A J¢A
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Correlation (Gaussian noise)

Wiener chaos decomposition (X3 = (X3 — 3X) + 3X)

C(a)C0x)C(x3) = :((x1)C(x2)¢(x3):
+ E(C(x1)¢(x2)) :¢(x3): +E(C(x1)C(x3)) :¢(x2): +E(C(x2)¢(x3)) :C(x1):
In general,

n

[T¢Ga)=> eIt It

i=1 A €A jZA
> > TIEo) :ITcx):
A pairings of A JEA

» Wick renormalization: kill the divergent chaoses.
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Correlation (Non-Gaussian)

O\T/O T/O each copy = /(H heat kernels)((x1)¢(x2)¢(x3)

Generalized Wick theorem:

EQIccan=" > TIEdcx)lieBy

ieA partitionsr Bem

P
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Correlation (Non-Gaussian)

A generalized Wiener chaos decomposition

C(x1)¢(x2)C(x3) = :C(x1)¢(x2)C(xs):
+ Ec(C(x1), ¢(x2)) :¢(x3): +Ec(C(x1),((x3)) :¢(x2) 1 +Ec(C(x2), C(x3)) :¢(xa):
+ Ec(¢(x1), ¢(x2), ¢ (x3))

In general,
[T¢oa) = E(IT¢en) TT¢x):
i=1 A €A J¢A
= ( Z chmulants) :HC(XJ-):
A partitions of A JEA

» Further renormalization: May need to kill divergent graphs
with higher cumulants.
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Technical difficulties

After renormalization, to prove the remaining graphs are
well-bounded,
» Do not have “Hyper-contractivity” or “Equivalence of
moments” as in Gaussian case, which bounds higher moments
by second moment automatically.

» Do not have martingale structure, therefore no
“Burkholder-Davis-Gundy” inequaltiy which essentially reduces
higher moments to second moment.

» Therefore, we have to bound moments of arbitrary orders by
hand.
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Power counting criteria

Given a graph H, every edge e represents a kernel with degree of
singularity ae.
For every subgraph H ¢ H

_ 1 _
g(:;,) 2 < D (Al + 5(1Aex| =1~ 14, )

where D is space-time dimension.
» Actually four conditions.
» Hairer-Quastel, Hairer-S., Chandra-S., Chandra-Hairer
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Result 1: (non-standard) CLT for KPZ

(Hairer & S. 2015)
Othe = 02h. + (0xh.)? + ¢

where (. is non-Gaussian. Then

he(x — Vhort, t) — v\gizt — h

h is the same solution to KPZ with (Gaussian) white noise; the
speeds Vyor, V‘ng depend on the first four cumulants of ¢ explicitly.
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Result 2: Universality of Phi4 3 with non-Gaussian noise

(S. & Xu)
Oru=Au+eV'(u)+¢

Rescale u.(x,t) = Eféu(a_lx, £72t). Under “pitchfork”

assumption, u. converges to solution of

O =Au—ud+¢
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Result 3: Wong-Zakai theorem with non-Gaussian noise

Oru = 02u+ H(u) + G(u)¢
(Chandra & S.) Let (. be smooth non-Gaussian

Ot U, :8)2<u‘E + H(u:)—Hi(uz)—Ha(u:) + G(ue)e

Hi(u) = — Y06 (u:)G(ue) — e 2cM 6 (1)26 () — e 2P 6" (1) G (u:)?
Ho(u) = =G (u)G(u)® — PG (u)*G(u) — G (1) G (u)G(u)?
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