Renormalization for Stochastic PDEs with Non-Gaussian Noises

Hao Shen (Columbia University)
Joint works with Ajay Chandra, Martin Hairer, Weijun Xu

February 11, 2016

Stochastic PDEs

- Kardar-Parisi-Zhang

$$
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\xi
$$

- Dynamical ϕ^{4}

$$
\partial_{t} \phi=\Delta \phi-\phi^{3}+\xi
$$

- SPDE with multiplicative noise (has Itô solution)

$$
\partial_{t} u=\partial_{x}^{2} u+H(u)+G(u) \xi
$$

Stochastic PDEs: renormalization

$$
\begin{gathered}
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\xi \\
\partial_{t} \phi=\Delta \phi-\phi^{3}+\xi \\
\partial_{t} u=\partial_{x}^{2} u+H(u)+G(u) \xi
\end{gathered}
$$

To define solutions:

1) Replace ξ by ξ_{ε}, a sequence of smooth Gaussian fields.
2) As $\varepsilon \rightarrow 0, \xi_{\varepsilon} \rightarrow \xi$. However, the smooth solutions do not converge. - Therefore needs renormalization (add counter-terms). 3) Take limit $\varepsilon \rightarrow 0$ with counter-terms.

Stochastic PDEs: renormalization

$$
\begin{gathered}
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\xi \\
\partial_{t} \phi=\Delta \phi-\phi^{3}+\xi \\
\partial_{t} u=\partial_{x}^{2} u+H(u)+G(u) \xi
\end{gathered}
$$

Q: How about Non-Gaussian approximation $\zeta_{\varepsilon} \rightarrow \xi$?

1) Assuming ζ_{ε} is mixing, $\zeta_{\varepsilon} \rightarrow \xi$ as $\varepsilon \rightarrow 0$ by standard CLT.
2) However, the smooth solutions (for noises ζ_{ε}) do not converge, even with the above renormalization!
3) Needs extra renormalization (counter-terms) due to non-Gaussianity.

More concrete assumptions on the noise

We consider the following general class of Non-Gaussian noises.

- ζ_{ε} is rescaled field of ζ :

$$
\zeta_{\varepsilon}=\varepsilon^{-D / 2} \zeta\left(x / \varepsilon, t / \varepsilon^{2}\right)
$$

where ζ satisfies:

- Mixing: $\zeta(z)$ and $\zeta\left(z^{\prime}\right)$ are independent whenever $\left|z-z^{\prime}\right|>1$. (Or, dependence decays exponentially on scale O(1).)
- Bounded moments.
- Continuity / Smoothness.
- Stationary and centered.

Result 1: (non-standard) CLT for KPZ

(Hairer \& S. 2015)

$$
\partial_{t} h_{\varepsilon}=\partial_{x}^{2} h_{\varepsilon}+\left(\partial_{x} h_{\varepsilon}\right)^{2}+\zeta_{\varepsilon}
$$

where ζ_{ε} is non-Gaussian. Then

$$
h_{\varepsilon}\left(x-v_{\text {hor }} t, t\right)-v_{\text {ver }}^{(\varepsilon)} t \rightarrow h
$$

h is the same solution to KPZ with (Gaussian) white noise; the speeds $v_{h o r}, v_{\text {ver }}^{(\varepsilon)}$ depend on the first four cumulants of ζ explicitly.

- (Hairer \& Quastel 2015, Gubinelli \& Perkowski 2016): polynomial nonlinearities in $\partial_{x} h$ - universality result.
- General continuous growth models
$\partial_{t} h=$ smoothing + lateral growth (i.e.interaction) + randomness
should scale to KPZ (under "weak asymmetry assumption").

Result 2: Universality of Phi4_3

(S. \& Xu 2016) A general class of phase coexistence models:

$$
\partial_{t} u=\Delta u+\varepsilon V^{\prime}(u)+\zeta
$$

Rescale $u_{\varepsilon}(x, t)=\varepsilon^{-\frac{1}{2}} u\left(\varepsilon^{-1} x, \varepsilon^{-2} t\right)$. Under "pitchfork" assumption, u_{ε} converges to solution of

$$
\partial_{t} u=\Delta u-u^{3}+\xi
$$

- (Hairer \& Xu 2016) proved universality for gaussian case.

Result 3: Wong-Zakai theorem

- (A result in stochastic analysis)

$$
d X_{t}=H\left(X_{t}\right) d t+G\left(X_{t}\right) d B
$$

$B_{\varepsilon} \rightarrow B$, has to subtract $\frac{1}{2} G^{\prime}\left(X_{\varepsilon}\right) G\left(X_{\varepsilon}\right)$ to obtain Itô limit.

Result 3: Wong-Zakai theorem

- (A result in stochastic analysis)

$$
d X_{t}=H\left(X_{t}\right) d t+G\left(X_{t}\right) d B
$$

$B_{\varepsilon} \rightarrow B$, has to subtract $\frac{1}{2} G^{\prime}\left(X_{\varepsilon}\right) G\left(X_{\varepsilon}\right)$ to obtain Itô limit.

- (Hairer \& Pardoux 2014) Approximating Itô solution to

$$
\partial_{t} u=\partial_{x}^{2} u+H(u)+G(u) \xi
$$

Let ξ_{ε} be smooth Gaussian, $\xi_{\varepsilon} \rightarrow \xi$.

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}= & \partial_{x}^{2} u_{\varepsilon}+H\left(u_{\varepsilon}\right)-\varepsilon^{-1} c_{0} G^{\prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right) \\
& -c_{1} G^{\prime}\left(u_{\varepsilon}\right)^{3} G\left(u_{\varepsilon}\right)-c_{2} G^{\prime \prime}\left(u_{\varepsilon}\right) G^{\prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right)^{2}+G\left(u_{\varepsilon}\right) \xi_{\varepsilon}
\end{aligned}
$$

Result 3: Wong-Zakai theorem

- (A result in stochastic analysis)

$$
d X_{t}=H\left(X_{t}\right) d t+G\left(X_{t}\right) d B
$$

$B_{\varepsilon} \rightarrow B$, has to subtract $\frac{1}{2} G^{\prime}\left(X_{\varepsilon}\right) G\left(X_{\varepsilon}\right)$ to obtain Itô limit.

- (Hairer \& Pardoux 2014) Approximating Itô solution to

$$
\partial_{t} u=\partial_{x}^{2} u+H(u)+G(u) \xi
$$

Let ξ_{ε} be smooth Gaussian, $\xi_{\varepsilon} \rightarrow \xi$.

$$
\begin{aligned}
\partial_{t} u_{\varepsilon}= & \partial_{x}^{2} u_{\varepsilon}+H\left(u_{\varepsilon}\right)-\varepsilon^{-1} c_{0} G^{\prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right) \\
& -c_{1} G^{\prime}\left(u_{\varepsilon}\right)^{3} G\left(u_{\varepsilon}\right)-c_{2} G^{\prime \prime}\left(u_{\varepsilon}\right) G^{\prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right)^{2}+G\left(u_{\varepsilon}\right) \xi_{\varepsilon}
\end{aligned}
$$

- (Chandra \& S. in progress) Let ζ_{ε} be smooth non-Gaussian

$$
\begin{gathered}
\partial_{t} u_{\varepsilon}=\partial_{x}^{2} u_{\varepsilon}+H\left(u_{\varepsilon}\right)-H_{1}\left(u_{\varepsilon}\right)-H_{2}\left(u_{\varepsilon}\right)+G\left(u_{\varepsilon}\right) \zeta_{\varepsilon} \\
H_{1}\left(u_{\varepsilon}\right)=-\varepsilon^{-1} c_{0} G^{\prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right)-\varepsilon^{-\frac{1}{2}} c^{(1)} G^{\prime}\left(u_{\varepsilon}\right)^{2} G\left(u_{\varepsilon}\right)-\varepsilon^{-\frac{1}{2}} c^{(2)} G^{\prime \prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right)^{2} \\
H_{2}(u)=-c^{(\alpha)} G^{\prime \prime \prime}(u) G(u)^{3}-c^{(\beta)} G^{\prime}(u)^{3} G(u)-c^{(\gamma)} G^{\prime \prime}(u) G^{\prime}(u) G(u)^{2}
\end{gathered}
$$

Perturbative solutions

$$
\partial_{t} \phi=\Delta \phi-\lambda \phi^{3}+\xi
$$

Let $\phi=\phi_{0}+\lambda \phi_{1}+\lambda^{2} \phi_{2} \ldots$ Then

$$
\begin{gathered}
\partial_{t} \phi_{0}=\Delta \phi_{0}+\xi \\
\partial_{t} \phi_{1}=\Delta \phi_{1}-\phi_{0}^{3}
\end{gathered}
$$

Let $P=\left(\partial_{t}-\Delta\right)^{-1}$. Solve them: $\phi_{0}=P * \xi, \phi_{1}=-P *\left(\phi_{0}^{3}\right)$, etc.

Correlation (Gaussian noise)

$$
\text { each copy }=\int\left(\prod \text { heat kernels }\right) \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right)
$$

Wick theorem:

$$
\mathbf{E}\left(\prod_{i \in A} \zeta\left(x_{i}\right)\right)=\sum_{\text {pairings } \pi} \prod_{(i, j) \in \pi} \mathbf{E}\left(\zeta\left(x_{i}\right) \zeta\left(x_{j}\right)\right)
$$

One of the pairings:

Correlation (Gaussian noise)

Wiener chaos decomposition $\left(X^{3}=\left(X^{3}-3 X\right)+3 X\right)$

$$
\begin{aligned}
& \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right)=: \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right): \\
& +\mathbf{E}\left(\zeta\left(x_{1}\right) \zeta\left(x_{2}\right)\right): \zeta\left(x_{3}\right):+\mathbf{E}\left(\zeta\left(x_{1}\right) \zeta\left(x_{3}\right)\right): \zeta\left(x_{2}\right):+\mathbf{E}\left(\zeta\left(x_{2}\right) \zeta\left(x_{3}\right)\right): \zeta\left(x_{1}\right):
\end{aligned}
$$

In general,

$$
\prod_{i=1}^{n} \zeta\left(x_{i}\right)=\sum_{A} \mathbf{E}\left(\prod_{i \in A} \zeta\left(x_{i}\right)\right): \prod_{j \notin A} \zeta\left(x_{j}\right):
$$

Correlation (Gaussian noise)

Wiener chaos decomposition $\left(X^{3}=\left(X^{3}-3 X\right)+3 X\right)$

$$
\begin{aligned}
& \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right)=: \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right): \\
& +\mathbf{E}\left(\zeta\left(x_{1}\right) \zeta\left(x_{2}\right)\right): \zeta\left(x_{3}\right):+\mathbf{E}\left(\zeta\left(x_{1}\right) \zeta\left(x_{3}\right)\right): \zeta\left(x_{2}\right):+\mathbf{E}\left(\zeta\left(x_{2}\right) \zeta\left(x_{3}\right)\right): \zeta\left(x_{1}\right):
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \prod_{i=1}^{n} \zeta\left(x_{i}\right)=\sum_{A} \mathrm{E}\left(\prod_{i \in A} \zeta\left(x_{i}\right)\right): \prod_{j \notin A} \zeta\left(x_{j}\right): \\
= & \sum_{A}\left(\sum_{\text {pairings of } A} \prod \mathrm{E}(\zeta \zeta)\right): \prod_{j \notin A} \zeta\left(x_{j}\right):
\end{aligned}
$$

- Wick renormalization: kill the divergent chaoses.

Correlation (Non-Gaussian)

$$
\text { each copy }=\int\left(\prod \text { heat kernels }\right) \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right)
$$

Generalized Wick theorem:

$$
\mathbf{E}\left(\prod_{i \in A} \zeta\left(x_{i}\right)\right)=\sum_{\text {partitions } \pi} \prod_{B \in \pi} \mathbf{E}_{c}\left\{\zeta\left(x_{i}\right) \mid i \in B\right\}
$$

Correlation (Non-Gaussian)

A generalized Wiener chaos decomposition

$$
\begin{aligned}
& \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right)=: \zeta\left(x_{1}\right) \zeta\left(x_{2}\right) \zeta\left(x_{3}\right): \\
& +\mathbf{E}_{c}\left(\zeta\left(x_{1}\right), \zeta\left(x_{2}\right)\right): \zeta\left(x_{3}\right):+\mathbf{E}_{c}\left(\zeta\left(x_{1}\right), \zeta\left(x_{3}\right)\right): \zeta\left(x_{2}\right):+\mathbf{E}_{c}\left(\zeta\left(x_{2}\right), \zeta\left(x_{3}\right)\right): \zeta\left(x_{1}\right): \\
& +\mathbf{E}_{c}\left(\zeta\left(x_{1}\right), \zeta\left(x_{2}\right), \zeta\left(x_{3}\right)\right)
\end{aligned}
$$

In general,

$$
\begin{aligned}
\prod_{i=1}^{n} \zeta\left(x_{i}\right) & =\sum_{A} \mathrm{E}\left(\prod_{i \in A} \zeta\left(x_{i}\right)\right): \prod_{j \notin A} \zeta\left(x_{j}\right): \\
& =\sum_{A}\left(\sum_{\text {partitions of } A} \prod \text { cumulants }\right): \prod_{j \notin A} \zeta\left(x_{j}\right):
\end{aligned}
$$

- Further renormalization: May need to kill divergent graphs with higher cumulants.

Technical difficulties

After renormalization, to prove the remaining graphs are well-bounded,

- Do not have "Hyper-contractivity" or "Equivalence of moments" as in Gaussian case, which bounds higher moments by second moment automatically.
- Do not have martingale structure, therefore no "Burkholder-Davis-Gundy" inequaltiy which essentially reduces higher moments to second moment.
- Therefore, we have to bound moments of arbitrary orders by hand.

Power counting criteria

Given a graph H, every edge e represents a kernel with degree of singularity a_{e}.
For every subgraph $\bar{H} \subset H$

$$
\sum_{e \in \mathcal{E}(\bar{H})} a_{e}<D\left(\left|\bar{H}_{i n}\right|+\frac{1}{2}\left(\left|\bar{H}_{e x}\right|-1-1_{\bar{H}_{e x}=\emptyset}\right)\right)
$$

where D is space-time dimension.

- Actually four conditions.
- Hairer-Quastel, Hairer-S., Chandra-S., Chandra-Hairer

Result 1: (non-standard) CLT for KPZ

(Hairer \& S. 2015)

$$
\partial_{t} h_{\varepsilon}=\partial_{x}^{2} h_{\varepsilon}+\left(\partial_{x} h_{\varepsilon}\right)^{2}+\zeta_{\varepsilon}
$$

where ζ_{ε} is non-Gaussian. Then

$$
h_{\varepsilon}\left(x-v_{\text {hor }} t, t\right)-v_{\text {ver }}^{(\varepsilon)} t \rightarrow h
$$

h is the same solution to KPZ with (Gaussian) white noise; the speeds $v_{h o r}, v_{\text {ver }}^{(\varepsilon)}$ depend on the first four cumulants of ζ explicitly.

contains a 0-th order chaos

Result 2: Universality of Phi4_3 with non-Gaussian noise

(S. \& Xu)

$$
\partial_{t} u=\Delta u+\varepsilon V^{\prime}(u)+\zeta
$$

Rescale $u_{\varepsilon}(x, t)=\varepsilon^{-\frac{1}{2}} u\left(\varepsilon^{-1} x, \varepsilon^{-2} t\right)$. Under "pitchfork" assumption, u_{ε} converges to solution of

$$
\partial_{t} u=\Delta u-u^{3}+\xi
$$

Result 3: Wong-Zakai theorem with non-Gaussian noise

$$
\partial_{t} u=\partial_{x}^{2} u+H(u)+G(u) \xi
$$

(Chandra \& S.) Let ζ_{ε} be smooth non-Gaussian

$$
\partial_{t} u_{\varepsilon}=\partial_{x}^{2} u_{\varepsilon}+H\left(u_{\varepsilon}\right)-H_{1}\left(u_{\varepsilon}\right)-H_{2}\left(u_{\varepsilon}\right)+G\left(u_{\varepsilon}\right) \zeta_{\varepsilon}
$$

$$
H_{1}\left(u_{\varepsilon}\right)=-\varepsilon^{-1} c_{0} G^{\prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right)-\varepsilon^{-\frac{1}{2}} C^{(1)} G^{\prime}\left(u_{\varepsilon}\right)^{2} G\left(u_{\varepsilon}\right)-\varepsilon^{-\frac{1}{2}} C^{(2)} G^{\prime \prime}\left(u_{\varepsilon}\right) G\left(u_{\varepsilon}\right)^{2}
$$

$$
H_{2}(u)=-c^{(\alpha)} G^{\prime \prime \prime}(u) G(u)^{3}-c^{(\beta)} G^{\prime}(u)^{3} G(u)-c^{(\gamma)} G^{\prime \prime}(u) G^{\prime}(u) G(u)^{2}
$$

