On the renormalization problem of multiple zeta values joint work with K. Ebrahimi-Fard, D. Manchon and J. Zhao

Johannes Singer Universität Erlangen

Paths to, from and in renormalization

Universität Potsdam – Institut für Mathematik 8-12 February 2016

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Outline

- Introduction
- Linear relations
- 2 Extensions of multiple zeta values
 - Examples in the literature
 - General construction principle
- 3 Renormalization group
 - General case
 - Multiple zeta value case

くぼう くほう くほう

Multiple zeta values

Multiple zeta values (MZVs) are given by the following nested series:

$$\zeta(k_1,\ldots,k_n):=\sum_{m_1>\cdots>m_n>0}\frac{1}{m_1^{k_1}\cdots m_n^{k_n}}$$

- Usually the MZVs are studied for positive integers $k_1, \ldots, k_n \in \mathbb{N}$ with $k_1 \geq 2$.
- The series is convergent for $k_1, \ldots, k_n \in \mathbb{Z}$ with

$$k_1 + \cdots + k_j > j$$
 for $j = 1, \ldots, n$.

• The integer *n* is called the *depth* and the sum $k_1 + \cdots + k_n$ is the *weight*.

-

Introduction Linear relations

For n = 1 we obtain the well-known *Riemann zeta function*

$$\zeta_1(s):=\sum_{m>0}rac{1}{m^s}=\prod_{p ext{ prime}}rac{1}{1-p^{-s}},$$

where $s \in \mathbb{C}$ with $\operatorname{Re}(s) > 1$.

Facts

- ζ_1 has an analytic continuation to $\mathbb{C} \setminus \{1\}$ and a pole in s = 1.
- Functional equation: $\zeta_1(1-s) = \frac{1}{(2\pi)^s} \cos\left(\frac{\pi s}{2}\right) \Gamma(s) \zeta_1(s)$.

•
$$\zeta_1(2k) = -\frac{(2\pi i)^{2k}B_{2k}}{2(2k)!}$$
 for $k \in \mathbb{N}$.

•
$$\zeta_1(-k) = -rac{B_{k+1}}{k+1}$$
 for $k \in \mathbb{N}_0$.

Renormalization problem of MZVs (rough version)

 $\label{eq:provide} Provide \ a \ systematic \ extension \ procedure \ for \ MZVs \ to \ arbitrary \ integer \ arguments...$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э

Introduction Linear relations

The *multiple zeta function* ζ_n is also defined by the nested series

$$\zeta_n(s_1,\ldots,s_n):=\sum_{m_1>\cdots>m_n>0}\frac{1}{m_1^{s_1}\cdots m_n^{s_n}}$$

Theorem (Akiyama, Egami, Tanigawa 2001)

The function $\zeta_n(s_1, \ldots, s_n)$ admits a meromorphic extension to \mathbb{C}^n . The subvariety $S_n \subseteq \mathbb{C}^n$ of singularities is given by

$$s_1 = 1$$
 or
 $s_1 + s_2 = 2, 1, 0, -2, -4, \dots$ or
 $s_1 + \dots + s_j \in \mathbb{Z}_{\leq j}$ $(j = 3, 4, \dots, n).$

- In the Riemann zeta case (n = 1) we have $\mathbb{Z}_{\leq 0} \cap \mathcal{S}_1 = \emptyset$.
- For $n \geq 3$ we observe $(\mathbb{Z}_{\leq 0})^n \subseteq \mathcal{S}_n$.

Renormalization problem of MZVs (refined version)

Provide a systematic extension procedure for MZVs to arbitrary integer arguments such that

(A) the meromorphic continuation is verified whenever it is defined...

MZVs exhibit more structure:

The $\mathbb{Q}\text{-vector}$ space spanned by the MZVs is denoted by

$$\mathcal{M} := \left\langle \zeta(\mathbf{k}) \colon \mathbf{k} \in \mathbb{N}^n, k_1 \geq 2, n \in \mathbb{N} \right\rangle_{\mathbb{O}}.$$

The vector space $\ensuremath{\mathcal{M}}$ is an algebra with two different products:

- quasi-shuffle product,
- shuffle product.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Quasi-shuffle product

Using the defining series representation of MZVs one can show that the product of two MZVs is again a $\mathbb{Q}\text{-linear}$ combination of MZVs.

Example: Nielsen's reflexion formula

For integers $a, b \ge 2$ we have

$$\zeta(a)\zeta(b) = \sum_{m>0} \frac{1}{m^a} \sum_{n>0} \frac{1}{n^b} = \sum_{m>n>0} \frac{1}{m^a n^b} + \sum_{n>m>0} \frac{1}{n^b m^a} + \sum_{m>0} \frac{1}{m^{a+b}} = \zeta(a, b) + \zeta(b, a) + \zeta(a+b).$$

- This can be generalized to arbitrary depth.
- We call these relations quasi-shuffle relations.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Shuffle product

Multiple zeta values are periods, i.e., we have the following integral formula:

$$\zeta(k_1,\ldots,k_n)=\int_{1>t_1>\cdots>t_k>0}\omega_1(t_1)\cdots\omega_k(t_k),$$

where $k := k_1 + \cdots + k_n$ and $\omega_i(t) := \frac{dt}{1-t}$ if $i \in \{k_1, k_1 + k_2, \ldots, k_1 + \cdots + k_n\}$ and $\omega_i(t) := \frac{dt}{t}$ otherwise.

Example

$$\begin{split} \zeta(2)^2 &= \int_{\substack{1 > t_1 > t_2 > 0 \\ 1 > \tilde{t}_1 > \tilde{t}_2 > 0}} \frac{dt_1}{t_1} \frac{dt_2}{1 - t_2} \frac{d\tilde{t}_1}{\tilde{t}_1} \frac{d\tilde{t}_2}{1 - \tilde{t}_2} \\ &= 4\zeta(3, 1) + 2\zeta(2, 2). \end{split}$$

- This can be generalized to arbitrary depth and weight.
- We call these relations *shuffle relations*.

Regularized double shuffle relations

• Combining quasi-shuffle and shuffle relations we obtain the so-called *double shuffle relations*. For example

$$4\zeta(3,1) + 2\zeta(2,2) \stackrel{\mathsf{shuffle}}{=} \zeta(2)\zeta(2) \stackrel{\mathsf{qu.-shuffle}}{=} 2\zeta(2,2) + \zeta(4)$$

leads to $\zeta(4) = 4\zeta(3,1)$.

 One can extend the quasi-shuffle and shuffle relations by regularization relations. For this one identifies the divergent zeta value "ζ(1)" with a formal variable *T*. They are called *regularized double shuffle relations*. For example ζ(3) = ζ(2, 1).

Conjecture

All linear relations among MZVs are induced by regularized double shuffle relations.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Renormalization problem of MZVs (final version)

Provide an extension procedure for MZVs to arbitrary integer arguments such that

- (A) the meromorphic continuation is verified whenever it is defined and
- (B) the quasi-shuffle relation is satisfied.

Naturally some questions arise:

- Are there solutions to the previous problem? (existence, uniqueness)
- What are the relations between different solutions?

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Word algebraic description of the quasi-shuffle relations

- Introduce the infinite alphabet $Y := \{z_k \colon k \in \mathbb{Z}\}.$
- Y^* denotes the set of words with letters in Y.
- $\mathcal{H} := \mathbb{Q}\langle Y \rangle$ be the free (non-commutative) algebra generated by Y.
- \bullet We define the <code>quasi-shuffle product *: $\mathcal{H}\otimes\mathcal{H}\to\mathcal{H}$ by</code>

(i)
$$1 * w := w * 1 := w$$
,
(ii) $z_m u * z_n v := z_m (u * z_n v) + z_n (z_m u * v) + z_{m+n} (u * v)$,
for words $w, u, v \in \mathcal{U}$ and $m, n \in \mathbb{Z}$

for words $w, u, v \in \mathcal{H}$ and $m, n \in \mathbb{Z}$.

• The unit map is given by $u : \mathbb{Q} \to \mathcal{H}$, $u(\lambda) = \lambda \mathbf{1}$.

Example

For $a, b, c \in \mathbb{Z}$ we have

$$z_a * z_b z_c = z_a z_b z_c + z_b z_a z_c + z_b z_c z_a + z_b z_{a+c} + z_{a+b} z_c,$$

which reflects the multiplication of the (formal) series

$$\zeta(a)\zeta(b,c) = \zeta(a,b,c) + \zeta(b,a,c) + \zeta(b,c,a) + \zeta(b,a+c) + \zeta(a+b,c).$$

イロン 人間 とくけい くけい

• Let $Y_+ := \{z_k \colon k \in \mathbb{N}\}$ and $w := z_{k_1} \cdots z_{k_n} \in W := Y_+^* \setminus z_1 Y_+^*$. We define

$$\zeta^*(w) := \zeta(k_1,\ldots,k_n).$$

Lemma (Hoffman 1997)

The map ζ^* is an algebra morphism, i.e., $\zeta^*(w_1)\zeta^*(w_1) = \zeta^*(w_1 * w_2)$ for $w_1, w_2 \in W$.

• The coproduct $\Delta\colon \mathcal{H}\to \mathcal{H}\otimes \mathcal{H}$ is given by deconcatenation

$$\Delta(w) := \sum_{uv=w} u \otimes v$$

for any word $w \in \mathcal{H}$.

• The counit $\varepsilon : \mathcal{H} \to \mathbb{Q}$ is defined by $\varepsilon(\mathbf{1}) = 1$, and $\varepsilon(w) = 0$ for $w \neq \mathbf{1}$.

-

• The reduced coproduct $\widetilde{\Delta}$ is given by

$$\widetilde{\Delta}(w) := \Delta(w) - w \otimes \mathbf{1} - \mathbf{1} \otimes w$$

for $w \in \ker(\varepsilon)$. In Sweedler's notation we have

$$\widetilde{\Delta}(w) = \sum_{(w)} w' \otimes w''.$$

• $(\mathcal{H}, *, \Delta)$ is a filtered and connected bialgebra. Hence, it is a Hopf algebra with antipode $S : \mathcal{H} \to \mathcal{H}$ given by $S(\mathbf{1}) = \mathbf{1}$ and

$$S(w) = -w - \sum_{(w)} S(w') * w'' = -w - \sum_{(w)} w' * S(w'')$$

for any word $w \in \ker(\varepsilon)$.

• For linear maps ϕ,ψ from ${\cal H}$ to an algebra ${\cal A}$ the convolution product is defined by

$$\phi \star \psi := m_{\mathcal{A}} \circ (\phi \otimes \psi) \circ \Delta.$$

ヘロト 人間ト ヘヨト ヘヨト

Examples in the literature

• Guo/Zhang (2008): Solution for non-positive arguments, e.g.,

$$\zeta_{\rm GZ}(-1,-3) = \frac{83}{64512}$$

• Manchon/Paycha (2010): Solution for arbitrary arguments, e.g.,

$$\zeta_{\mathsf{MP}}(-1,-3) = \frac{1}{840}$$

 Ebrahimi-Fard/Manchon/Singer (2015): One-parameter family of solutions for strictly negative arguments, e.g.,

$$\zeta_{\mathsf{EMS},t}(-1,-3) = rac{1}{8064} rac{166t^2 + 166t + 31}{(4t+3)(4t+1)}$$

for $t \in \{s \in \mathbb{C} : \operatorname{Re}(s) > 0\}.$

ヘロト 人間ト ヘヨト ヘヨト

General construction principle

Theorem (Connes, Kreimer 2000, Manchon 2008)

Let \mathcal{H} be a graded or filtered Hopf algebra over a ground field k, and let \mathcal{A} a commutative unital k-algebra equipped with a renormalization scheme $\mathcal{A} = \mathcal{A}_- \oplus \mathcal{A}_+$ and the corresponding idempotent Rota–Baxter operator π , where $\mathcal{A}_- = \pi(\mathcal{A})$ and $\mathcal{A}_+ = (\mathrm{Id} - \pi)(\mathcal{A})$. The character $\psi : \mathcal{H} \to \mathcal{A}$ admits a unique Birkhoff decomposition

$$\psi_- \star \psi = \psi_+,$$

where $\psi_{-} : \mathcal{H} \to k\mathbf{1} \oplus \mathcal{A}_{-}$ and $\psi_{+} : \mathcal{H} \to \mathcal{A}_{+}$ are characters.

- Quasi-shuffle Hopf algebra $(\mathcal{H}, *, \Delta)$.
- Renormalization scheme: *Minimal subtraction*, i.e., let $\mathcal{A} := \mathbb{C}[\lambda^{-1}, \lambda]$, $\mathcal{A}_{-} := \lambda^{-1}\mathbb{C}[\lambda^{-1}]$ and $\mathcal{A}_{+} := \mathbb{C}[\![\lambda]\!]$ with $\pi : \mathcal{A} \to \mathcal{A}_{-}$ by

$$\pi\left(\sum_{n=-l}^{\infty}\mathsf{a}_n\lambda^n\right):=\sum_{n=-l}^{-1}\mathsf{a}_n\lambda^n$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Regularization process: The defining series of MZVs is replaced by

$$\zeta^{(\lambda)}(z_{k_1}\cdots z_{k_n}):=\sum_{m_1>\cdots>m_n>0}f_{\lambda,k_1}(m_1)\cdots f_{\lambda,k_n}(m_n)\in\mathcal{A}.$$

The deformations $f_{\lambda,\ell}(x)$ are defined by

• GZ: $z_{\ell} \mapsto f_{\lambda,\ell}(x) := \frac{\exp(-\ell x \lambda)}{x^{\ell}}$,

• MP:
$$z_{\ell} \mapsto f_{\lambda,\ell}(x) := \frac{1}{x^{\ell-\lambda}}$$
,

• EMS:
$$z_\ell \mapsto f_{\lambda,\ell}(x) := rac{q^{|\ell|x|}}{(1-q^x)^\ell}$$
, $\lambda = \log(q)$.

• The renormalized MZVs are then obtained by $\lim_{\lambda\to 0}\zeta_+^{(\lambda)}.$

Renormalization group

- Let \mathcal{H} be a connected, filtered Hopf algebra over a field k of characteristic zero.
- Let \mathcal{A} be a commutative unital k-algebra.
- The set G_A of unital algebra morphisms from \mathcal{H} to \mathcal{A} is a group w.r.t. to the convolution product \star .

Lemma

Let $N \subseteq \mathcal{H}$ be a left coideal with respect to the reduced coproduct, i.e., $\widetilde{\Delta}(N) \subseteq N \otimes \mathcal{H}$ and $\varepsilon(N) = \{0\}$. The set

$$T_{\mathcal{A}} := \left\{ \phi \in \mathcal{G}_{\mathcal{A}} \colon \phi |_{\mathcal{N}} = \mathbf{0} \right\}$$

is a subgroup of (G_A, \star, e) .

イロト イポト イヨト イヨト

Sketch of proof.

Obviously, $e \in T_{\mathcal{A}}$. Let $\phi, \psi \in T_{\mathcal{A}}$. Since $G_{\mathcal{A}}$ is a group $\phi \star \psi^{-1} \in G_{\mathcal{A}}$. Further, for any $w \in N$, we have

$$\begin{aligned} (\phi \star \psi^{-1})(w) &= (\phi \star (\psi \circ S))(w) \\ &= \phi(w) + \psi(S(w)) + \sum_{(w)} \phi(w')\psi(S(w'')) \\ &= \phi(w) - \psi(w) - \sum_{(w)} \psi(w')\psi(S(w'')) \\ &+ \sum_{(w)} \phi(w')\psi(S(w'')) = 0 \end{aligned}$$

using the fact that by definition N is a left-coideal of Δ .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

The group T_A is called the *renormalization group* associated to N.

Let $\zeta: N \to \mathcal{A}$ be a partially defined character on \mathcal{H} , i.e., a linear map such that $\zeta(v.w) = \zeta(v)\zeta(w)$ as long as v, w and the product v.w belong to N. We define the set of all possible renormalizations with target algebra \mathcal{A} by

$$X_{\mathcal{A},\zeta} := \big\{ \alpha \in \mathcal{G}_{\mathcal{A}} \colon \alpha |_{\mathcal{N}} = \zeta \big\}.$$

Theorem

The set $X_{A,\zeta}$ is a principal homogenous space for the group T_A . More precisely, the left group action

$$\begin{aligned} & \Gamma_{\mathcal{A}} \times X_{\mathcal{A},\zeta} \longrightarrow X_{\mathcal{A},\zeta} \\ & (\phi, \alpha) \longmapsto \phi \star \alpha \end{aligned}$$

is free and transitive.

< ロ > < 同 > < 回 > < 回 >

General case Multiple zeta value case

Sketch of proof.

The group action is well-defined, since for $\phi \in T_A$, $\alpha \in X_{A,\zeta}$ and $w \in N$

$$(\phi \star \alpha)(w) = \phi(w) + \alpha(w) + \sum_{(w)} \phi(w')\alpha(w'') = \alpha(w) = \zeta(w),$$

using that $\phi|_N = 0$. Freeness is obvious. For transitivity let $\alpha, \beta \in X_{A,\zeta}$. Then for $w \in N$

$$(\alpha \star \beta^{-1})(w) = (\alpha \star (\beta \circ S))(w) = \alpha(w) + \beta(S(w)) + \sum_{(w)} \alpha(w')\beta(S(w''))$$
$$= \alpha(w) - \beta(w) - \sum_{(w)} \beta(w')\beta(S(w'')) + \sum_{(w)} \alpha(w')\beta(S(w''))$$
$$= (\alpha - \beta)(w) + \sum_{(w)} (\alpha - \beta)(w')\beta(S(w'')) = 0,$$

using $\alpha|_N = \beta|_N = \zeta$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э

Renormalization group for MZVs

We apply the general framework to the following data:

- Quasi-shuffle Hopf algebra $\mathcal{H} := (\mathbb{Q}\langle Y \rangle, *, \Delta), \ Y := \{z_k \colon k \in \mathbb{Z}\}$
- Target space $\mathcal{A} := \mathbb{C}$.
- Left coideal N:

Definition

A word $w := z_{k_1} \cdots z_{k_n} \in Y^*$ is called *non-singular* if and only if

- $k_1 \neq 1$ and
- $k_1 + k_2 \notin \{2, 1, 0, -2, -4, \ldots\}$ and
- $k_1 + \cdots + k_j \notin \mathbb{Z}_{\leq j}$ for $j \geq 3$.

The linear span of all non-singular words is denoted by N

Lemma

The space N is a left coideal for the reduced coproduct $\overline{\Delta}$ and invariant under contractions, e.g., $z_{k_1}z_{k_2}z_{k_3}z_{k_4}z_{k_5} \mapsto z_{k_1+k_2}z_{k_3}z_{k_4+k_5}$.

Extensions of multiple zeta values Renormalization group

• For words $w = z_{k_1} \cdots z_{k_n} \in N$ the partially defined character $\zeta^* \colon N \to \mathbb{C}$ is given by

$$\zeta^*(w) := \zeta_n(k_1,\ldots,k_n),$$

which is either convergent or can be defined by analytic continuation.

Renormalization problem of MZVs

- Manchon/Paycha: There exists a solution $\phi \in X_{\mathbb{C},\zeta^*}$.
- Main theorem: All solutions lie on a single orbit, i.e., $X_{\mathbb{C},\zeta^*} = T_{\mathbb{C}} \star \phi$.
- By restricting the Hopf algebra to words generated by $Y_{\leq 0} := \{z_k : k \in \mathbb{Z}_{\leq 0}\}$ and $Y_{\leq 0} := \{z_k : k \in \mathbb{Z}_{\leq 0}\}$ we can compare all other values found in the literature with each other.

Question

How large is the renormalization group $T_{\mathbb{C}}$?

Let \mathcal{A} be a commutative unital algebra.

Facts

- The two-sided ideal \mathcal{N} generated by N is a Hopf ideal of \mathcal{H} .
- The renormalization group T_A is isomorphic to the group of characters of the Hopf algebra \mathcal{H}/\mathcal{N} .

Theorem

The renormalization group T_A is pro-unipotent and can be identified with the space $\mathcal{L}(W, A)$ of linear maps from W to A, where $W = \pi_1(\mathcal{H}/\mathcal{N})$ and $\pi_1 := \log^* \operatorname{Id}_{\mathcal{H}/\mathcal{N}}$ is the Eulerian idempotent.

Theorem

The Lie algebra $\mathfrak{t}_{\mathcal{A}}$ of the pro-unipotent renormalization group $T_{\mathcal{A}}$ is infinite-dimensional.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Summary

- We have shown that the renormalization problem of MZVs has infinitely many solutions.
- The relation between two solutions is described by a transfer character which is an element of the renormalization group.
- The group action is independent of a specific renormalization procedure and comprises all possible solutions of the renormalization problem.

イロト イポト イヨト イヨト

References

- M. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000), no. 1, 49–68.
- A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I, Comm. Math. Phys. 210 (2000), no. 1, 249–273.
- S. Akiyama, S. Egami, Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), no. 2, 107–116.
- D. Manchon, *Hopf algebras in renormalisation*, Handbook of algebra, Vol. 5 (2008), 365–427.
- L. Guo, B. Zhang, *Renormalization of multiple zeta values*, J. Algebra 319 (2008), no. 9, 3770–3809.
- D. Manchon, S. Paycha, Nested sums of symbols and renormalized multiple zeta values, Int. Math. Res. Not. IMRN (2010), no. 24, 4628–4697.
- K. Ebrahimi-Fard, D. Manchon, J. Singer, *Renormalisation of q-Regularised Multiple Zeta Values*, to appear in Lett. Math. Phys. (2016).
- K. Ebrahimi-Fard, D. Manchon, J. Singer, J. Zhao, Renormalisation group for multiple zeta values, arXiv:1511.06720 (2015).

Thank you for your attention!

< ロ > < 同 > < 三 > < 三 >