q-Multiple zeta values II: from regularization to shuffle renormalization

joint work with K. Ebrahimi-Fard and D. Manchon

Johannes Singer Universität Erlangen

Paths to, from and in renormalization
Universität Potsdam – Institut für Mathematik
8-12 February 2016

Outline

- Reminder of multiple zeta values
 - Renormalization problem revisited
 - Meromorphic continuation
- 2 Multiple polylogarithms and q-multiple zeta values
 - Multiple polylogarithms
 - Shuffle product
 - q-Multiple zeta values
- Renormalization procedure
 - Family of Hopf algebras
 - Regularization process

Renormalization problem revisited

On Monday we regarded multiple zeta values (MZVs) given by

$$\zeta(k_1,\ldots,k_n) := \sum_{m_1 > \cdots > m_n > 0} \frac{1}{m_1^{k_1} \cdots m_n^{k_n}}$$

for integers $k_1 \ge 2$, $k_2, \ldots, k_n \ge 1$ and discussed the following problem:

Renormalization problem of MZVs (quasi-shuffle version)

Provide an extension procedure for MZVs to arbitrary integer arguments such that

- (A) the meromorphic continuation is verified whenever it is defined and
- (B) the quasi-shuffle relation is satisfied.

We modify the renormalization problem of multiple zeta values by replacing *quasi-shuffle relation* by *shuffle relation* in (B).

Renormalization problem of MZVs (shuffle version)

Provide an extension procedure for MZVs to **non-positive** integer arguments such that

- (A) the meromorphic continuation is verified whenever it is defined and
- (B) the **shuffle relation** is satisfied.

Meromorphic continuation

The multiple zeta function ζ_n is also defined by the nested series

$$\zeta_n(s_1,\ldots,s_n):=\sum_{m_1>\cdots>m_n>0}\frac{1}{m_1^{s_1}\cdots m_n^{s_n}}.$$

The function $\zeta_n(s_1,\ldots,s_n)$ admits a meromorphic extension to \mathbb{C}^n . The subvariety S_n of singularities is given by

Meromorphic continuation at non-positive integer arguments

- Case n=1: For $l \in \mathbb{N}_0$ we have $\zeta_1(-l) = -\frac{B_{l+1}}{l+1}$.
- Case n = 2: For $k_1, k_2 \in \mathbb{N}_0$ with $k_1 + k_2$ odd we have

$$\zeta_2(-k_1,-k_2) = \frac{1}{2} (1 + \delta_0(k_2)) \frac{B_{k_1+k_2+1}}{k_1 + k_2 + 1}.$$

• Case $n \geq 3$: We have $(\mathbb{Z}_{\leq 0})^n \subseteq \mathcal{S}_n$.

Multiple polylogarithms

Definition

For integers k_1, \ldots, k_n multiple polylogarithms are defined by the iterated sums

$$\mathsf{Li}_{k_1,\ldots,k_n}(z) := \sum_{m_1 > \cdots > m_n > 0} \frac{z^{m_1}}{m_1^{k_1} \cdots m_n^{k_n}}$$

where z is a complex number with |z| < 1.

Let $k_1 \geq 2$ and $k_2, \ldots, k_n \geq 1$. Then one has $\zeta(k_1, \ldots, k_n) = \mathsf{Li}_{k_1, \ldots, k_n}(1)$. For a tuple $\mathbf{k} := (k_1, \ldots, k_n)$ we call

- n the depth of k;
- $|\mathbf{k}| := k_1 + \cdots + k_n$ the weight of \mathbf{k} .

The \mathbb{Q} -vector space spanned by $\mathcal{M}:=\langle \zeta(\mathbf{k})\colon \mathbf{k}\in\mathbb{N}^n, k_1>1, n\in\mathbb{N}\rangle_{\mathbb{Q}}$ is an algebra equipped with two products:

- quasi-shuffle product
- shuffle product

Shuffle product

Let $\varphi_1, \ldots, \varphi_p$ be complex-valued differential 1-forms defined on a compact interval. The iterative Chen-integral is defined for real numbers x and y by

$$\int_{x}^{y} \varphi_{1} \cdots \varphi_{p} := \int_{x}^{y} \varphi_{1}(t) \int_{x}^{t} \varphi_{2} \cdots \varphi_{p}.$$

Theorem (Kontsevich)

Let
$$\omega_0(t):=rac{dt}{t}$$
 and $\omega_1(t):=rac{dt}{1-t}.$ For $k_1,\ldots,k_n\in\mathbb{N}$ we have

$$\mathsf{Li}_{k_1,\ldots,k_n}(z) = \int_0^z \omega_0^{k_1-1} \omega_1 \cdots \omega_0^{k_n-1} \omega_1.$$

Let $Y:=\{x_0,x_1\}$ and $\mathfrak{h}^{\sqcup \sqcup}:=\mathbb{Q}\oplus x_0\mathbb{Q}\langle Y\rangle x_1$. For any $u,v\in Y^*$ we define

- (i) $\mathbf{1} \sqcup u := u \sqcup \mathbf{1} := u$;
- (ii) $au \coprod bv := a(u \coprod bv) + b(au \coprod v)$ for $a, b \in \{x_0, x_1\}$.

For example we have

$$x_0x_1 \coprod x_0x_1 = 2x_0x_1x_0x_1 + 4x_0^2x_1^2$$
.

Lemma (Hoffman 1997)

- The pair $(\mathfrak{h}^{\sqcup}, \sqcup)$ is an algebra.
- The map $\zeta^{\sqcup}:\mathfrak{h}^{\sqcup}\to\mathbb{R}$, $\zeta^{\sqcup}(x_0^{k_1-1}x_1\cdots x_0^{k_n-1}x_1):=\zeta(k_1,\ldots,k_n)$ is a morphism of algebras.

The above example leads to

$$\zeta(2)^2 = 2\zeta(2,2) + 4\zeta(3,1).$$

q-Multiple zeta values

Yesterday, the following model was discussed:

Definition (Ohno, Okuda, Zudilin 2012)

Let $k_1, \ldots, k_n \in \mathbb{Z}$ and |q| < 1. We define the q-analogue of MZVs (g-MZVs) by

$$\mathfrak{z}_q(k_1,\ldots,k_n) := \sum_{m_1 > \cdots > m_n > 0} \frac{q^{m_1}}{[m_1]_q^{k_1} \cdots [m_n]_q^{k_n}},$$

where
$$[m]_q := \frac{1-q^m}{1-q} = 1 + q + q^2 + \cdots + q^{m-1}$$
.

• For $k_1 > 2$ and $k_2, \ldots, k_n > 1$ one has

$$\lim_{q \to 1} \mathfrak{z}_q(k_1, \ldots, k_n) = \zeta(k_1, \ldots, k_n).$$

• The modified q-MZVs are defined by

$$\bar{\mathfrak{z}}_q(k_1,\ldots,k_n):=(1-q)^{-(k_1+\cdots+k_n)}\mathfrak{z}_q(k_1,\ldots,k_n).$$

Lemma (Castillo, Ebrahimi-Fard, Manchon 2013)

Let $k_1, \ldots, k_n \in \mathbb{Z}$. Then we have

$$\bar{\mathfrak{z}}_q(k_1,\ldots,k_n)=P_q^{k_1}[yP_q^{k_2}[y\cdots P_q^{k_n}[y]\cdots]](\mathbf{q}),$$

where
$$y(t) := \frac{t}{1-t}$$
 and $P_q[f](t) := \sum_{n \geq 0} f(q^n t)$.

Two important observations: The operator P_q is

- a Rota-Baxter operator (RBO) of weight -1.
- invertible with $P_q^{-1}[f](t) = D_q[f](t) := f(t) f(qt)$ and D_q satisfies the generalized Leibniz rule, i. e.

$$D_q[fg] = D_q[f]g + fD_q[g] - D_q[f]D_q[g].$$

Therefore, we obtain double q-shuffle relations for arbitrary integer arguments. This motivated us to consider the shuffle version of the renormalization problem of MZVs.

Shuffle problem

Shuffle problem

- What is the shuffle product for non-positive integer arguments?
- Can we establish a corresponding Hopf algebra for this shuffle product?

Lemma

Let |z| < 1 and $k_1, \ldots, k_n \in \mathbb{Z}$. Then we have

$$\operatorname{Li}_{k_1,\ldots,k_n}(z) = J^{k_1}[yJ^{k_2}[y\cdots J^{k_n}[y]\cdots]](z),$$

where
$$y(z) := \frac{z}{1-z}$$
 and $J[f](z) := \int_0^z \frac{f(t)}{t} dt$.

Two important observations: The operator J is

- a RBO of weight 0 (integration by parts formula).
- invertible with $J^{-1}[f](z) = \delta[f](z) := z \frac{\partial f}{\partial z}(z)$ and δ is a derivation, i.e., it satisfies the Leibniz rule

Renormalization procedure

- **①** Construct a family of Hopf algebras in $\lambda \in \mathbb{Q}$ reflecting
 - the *q*-analogues of MZVs $(\lambda = -1)$,
 - the multiple polylogarithms ($\lambda = 0$).
- Establish a regularization process using deformations of
 - q-analogues of MZVs,
 - multiple polylogarithms.
- Apply Connes-Kreimer factorization.

Theorem (Connes, Kreimer 2000, Manchon 2008)

Let $(\mathcal{H}, m_{\mathcal{H}}, \Delta)$ be a connected filtered Hopf algebra and \mathcal{A} a commutative unital algebra equipped with a renormalization scheme $\mathcal{A} = \mathcal{A}_- \oplus \mathcal{A}_+$ and corresponding idempotent Rota–Baxter operator π , where $\mathcal{A}_- = \pi(\mathcal{A})$ and $\mathcal{A}_+ = (\operatorname{Id} - \pi)(\mathcal{A})$. Further let $\phi \colon \mathcal{H} \to \mathcal{A}$ be a Hopf algebra character. Then the character ϕ admits a unique decomposition $\phi = \phi_-^{\star(-1)} \star \phi_+$ called algebraic Birkhoff decomposition, in which $\phi_- \colon \mathcal{H} \to \mathbb{Q} \oplus \mathcal{A}_-$ and $\phi_+ \colon \mathcal{H} \to \mathcal{A}_+$ are characters.

Word algebraic setting

We introduce a word algebraic setting concerning the shuffle product with non-positive integer arguments:

- $L := \{d, y\}$ be the set of letters.
- L^* free monoid of L with empty word 1.
- $\mathbb{Q}\langle L\rangle$ is the free algebra of L.
- $\mathcal{T} := \langle \{ wd \colon w \in L^* \} \rangle_{\mathbb{Q}}$ is a subspace of $\mathbb{Q}\langle L \rangle$
- $W := L^*y \cup \{1\}$ be the set of admissible words.
- $\mathcal{H} := \langle W \rangle_{\mathbb{Q}}$ be the algebra spanned by W.

Let $w \in W$. Then we define the

- weight wt(w) given by the number of letters of w;
- depth dpt(w) given by the number of y in w.

Algebra \mathcal{H}_{λ}

Let $\lambda \in \mathbb{Q}$. We define the product $\sqcup_{\lambda} : \mathbb{Q}\langle L \rangle \otimes \mathbb{Q}\langle L \rangle \to \mathbb{Q}\langle L \rangle$ iteratively by

- (P1) $\mathbf{1} \coprod_{\lambda} w = w \coprod_{\lambda} \mathbf{1} := w$,
- (P2) $yu \coprod_{\lambda} v = u \coprod_{\lambda} yv := y(u \coprod_{\lambda} v),$
- (P3) $\begin{cases} du \coprod_{\lambda} dv = \frac{1}{\lambda} \left(d(u \coprod_{\lambda} v) du \coprod_{\lambda} v u \coprod_{\lambda} dv \right) & \lambda \neq 0, \\ du \coprod_{0} dv = d(u \coprod_{0} dv) u \coprod_{0} d^{2}v & \lambda = 0, \end{cases}$

for any $u, v, w \in L^*$.

Lemma

For $\lambda \in \mathbb{Q}$ the subspace \mathcal{T} is a two-sided ideal of $(\mathbb{Q}\langle L \rangle, \sqcup_{\lambda})$.

By \mathcal{L}_0 we denote the ideal of $(\mathbb{Q}\langle L \rangle, \sqcup_0)$ generated by the elements

$$d^k(d(u \coprod_0 v) - du \coprod_0 v - u \coprod_0 dv), \quad k \in \mathbb{N}_0; u, v \in L^*.$$

For $\lambda \neq 0$ we define $\mathcal{L}_{\lambda} := \{0\}$.

Lemma

For $\lambda \in \mathbb{Q}$ the triple $(\mathbb{Q}\langle L \rangle / \mathcal{L}_{\lambda}, \sqcup_{\lambda})$ is a \mathbb{Q} -algebra.

Coalgebra \mathcal{H}_{λ}

We define the coproduct

$$\overline{\Delta}_{\lambda} : \mathbb{Q}\langle L \rangle \to \mathbb{Q}\langle L \rangle \otimes \mathbb{Q}\langle L \rangle$$

by

- (C1) $\overline{\Delta}_{\lambda}(y) := \mathbf{1} \otimes y + y \otimes \mathbf{1}$,
- (C2) $\overline{\Delta}_{\lambda}(d) := \mathbf{1} \otimes d + d \otimes \mathbf{1} + \lambda d \otimes d$,

which extends uniquely to an algebra morphism (with respect to concatenation) on the free algebra $\mathbb{Q}\langle L\rangle$.

Lemma

For $\lambda \in \mathbb{Q}$ the double $(\mathbb{Q}\langle L \rangle, \overline{\Delta}_{\lambda})$ is a cocommutative coalgebra, and \mathcal{T} and \mathcal{L}_{λ} are coideals of $\mathbb{Q}\langle L \rangle$.

Hopf algebra \mathcal{H}_{λ}

Theorem

Let $\lambda \in \mathbb{Q}$ and $\mathcal{H}_{\lambda} := \mathbb{Q}\langle L \rangle / (\mathcal{T} + \mathcal{L}_{\lambda})$. The triple $(\mathcal{H}_{\lambda}, \sqcup_{\lambda}, \Delta_{\lambda})$ is a Hopf algebra with

$$\Delta_{\lambda}([w]) := \overline{\Delta}_{\lambda}(w) \mod ((\mathcal{T} + \mathcal{L}_{\lambda}) \otimes \mathbb{Q}\langle L \rangle + \mathbb{Q}\langle L \rangle \otimes (\mathcal{T} + \mathcal{L}_{\lambda}))$$

for any word $w \in W$.

Further we obtain a factorization theorem:

Theorem (Shuffle factorization)

Let $\lambda \in \mathbb{Q}$. Then for all $w \in W$ we have

$$\sqcup_{\lambda} \circ \Delta_{\lambda}([w]) = 2^{\operatorname{dpt}([w])}[w].$$

Regularization process

Now need to specify characters Ψ^c and Ψ^q which deform the divergent (q-)MZVs to Laurent series in $\mathbb{Q}[z^{-1},z]$. For this we define the following maps:

$$\begin{array}{ccccc} \Psi^c \colon & (\mathcal{H}_0, \sqcup_0) & \longrightarrow & (\mathbb{Q}\llbracket t \rrbracket, \cdot) & \longrightarrow & (\mathbb{Q}\llbracket z^{-1}, z \rrbracket, \cdot) \\ & [d^{k_1}y \cdots d^{k_n}y] & \longmapsto & \mathsf{Li}_{-k_1, \ldots, -k_n}(t) & \longmapsto & \mathsf{Li}_{-k_1, \ldots, -k_n}(e^z) \end{array}$$

and

Theorem

The maps $\Psi^c: (\mathcal{H}_0, \sqcup_0) \to (\mathbb{Q}[z^{-1}, z], \cdot)$ and $\Psi^q: (\mathcal{H}_{-1}, \sqcup_{-1}) \to (\mathbb{Q}[z^{-1}, z], \cdot)$ are well-defined and morphisms of algebras.

Now we are in the position to apply the algebraic Birkhoff decomposition to Ψ^c and Ψ^q . We define for $k_1, \ldots, k_n \in \mathbb{N}_0$

renormalized MZVs by

$$\zeta_{+}(-k_{1},\ldots,-k_{n}):=\lim_{z\to 0} \Psi_{+}^{c}([d^{k_{1}}y\cdots d^{k_{n}}y])(z)$$

renormalized q-MZVs by

$$\mathfrak{z}_{+}(-k_{1},\ldots,-k_{n}):=\lim_{z\to 0}\frac{(-1)^{k_{1}+\cdots+k_{n}}}{z^{k_{1}+\cdots+k_{n}}}\Psi_{+}^{q}([d^{k_{1}}y\cdots d^{k_{n}}y])(z).$$

Theorem

- a) The renormalization process is compatible with the meromorphic continuation, i.e., ζ_+ coincides with the meromorphic continuation ζ_n whenever it is defined.
- b) The map ζ_+ satisfies the shuffle product \sqcup_0 .
- c) The map \mathfrak{z}_+ is well-defined and for any $\mathbf{k} \in (\mathbb{Z}_{\leq 0})^n$ we have $\zeta_+(\mathbf{k}) = \mathfrak{z}_+(\mathbf{k})$.
- d) For any $\mathbf{k} \in (\mathbb{Z}_{\leq 0})^n$ we have $\zeta_+(\mathbf{k}) \in \mathbb{Q}$.
- e) For any character $\psi : (\mathcal{H}_0, \sqcup_0) \to (\mathbb{Q}[z^{-1}, z], \cdot)$ with

$$\lim_{z\to 0}\psi_+([d^ky])(z)=\zeta_1(-k)$$

for $k \in \mathbb{N}_0$ we have

$$\zeta_{+}(-k_{1},\ldots,-k_{n})=\lim_{z\to 0}\psi_{+}([d^{k_{1}}y\cdots d^{k_{n}}y])(z)$$

for $k_1, \ldots, k_n \in \mathbb{N}_0$.

Numerical examples

$k_1 \setminus k_2$	0	-1	-2	-3
0	<u>1</u>	<u>1</u> 24	0	$-\frac{1}{240}$
-1	$\frac{1}{12}$	$\frac{1}{144}$	$-\frac{1}{240}$	$-\frac{1}{1440}$
-2	1 72	$-\frac{1}{240}$	$-\frac{1}{720}$	1 504
-3	$-\frac{1}{120}$	$-\frac{1}{360}$	<u>1</u> 504	107 100800

Table: The renormalized MZVs $\zeta_+(k_1, k_2)$.

Summary

- Our shuffle renormalization procedure is limited to non-positive integer arguments.
- In the shuffle case the renormalization problem of MZVs has a *unique* solution in contrast to the quasi-shuffle case where we have *infinitely* many solutions.
- Can we expect a double shuffle structure for renormalized MZVs?
 One has to cope with the following problem:
 - The quasi-shuffle relation

$$\zeta(0)^2 = 2\zeta(0,0) + \zeta(0)$$

implies $\zeta(0,0)=\frac{3}{8}$ since the meromorphic continuation prescribes $\zeta(0)=-\frac{1}{2}.$

• From the previous table we know that in the shuffle case $\zeta(0,0)=\frac{1}{4}$.

References

4. D. Manchon.

Y. Ohno, J. Okuda, W. Zudilin
 Cyclic q-MZSV sum, J. Number Theory 132 (2012), no. 1, 144–155.

Hopf algebras in renormalisation.

- A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I, Comm. Math. Phys. 210 (2000), no. 1, 249–273.
- S. Akiyama, S. Egami, Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), no. 2, 107–116.
- Handbook of algebra, Vol. 5 (2008), 365–427.

 5. J. Castillo-Medina, K. Ebrahimi-Fard, D. Manchon
 Unfolding the double shuffle structure of q-multiple zeta values,
 Bull. Aust. Math. Soc. 91 (2015), no. 3. 368–388.
- K. Ebrahimi-Fard, D. Manchon, J. Singer The Hopf algebra of (a)multiple polylogarithms with non-positive arguments, arXiv:1503.02977 (2015).

Thank you for your attention!