Marko Berghoff, Humboldt Universität zu Berlin

Potsdam, February 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Introduction

QFT in position space / Causal perturbation theory

 Stueckelberg, Bogoliubov, Shirkov (late 50's): Axiomatic approach to S-matrix,

$$S=1+\sum_{n>1}T_n.$$

- Epstein and Glaser ('73): Renormalization of S translates into an extension (splitting) problem for distributions.
- Simplified version by Stora (ca.'00), used in QFT on curved spacetimes.

Introduction

Bergbauer, Brunetti, Kreimer ('10): Version for single graphs.

Example (Euclidean ϕ_4^4 -theory)

Feynman rules $\Phi: G \mapsto \int \omega_G = \int dx dy dz \frac{1}{(x-y)^4 (y-z)^2 z^4 x^2}$ What is $\int \omega_G$?

- Easy answer: ∞ .
- Tricky answer: Find renormalized value ...

Idea (Atiyah; Axelrod, Singer): Use a smooth model to arrange the divergences in a "nice" way, renormalize on this model, then push the result back to original spacetime.

Definition

Let $\mathcal{A} = \{A_1, \ldots, A_k\}$ be a family of smooth subvarities in an algebraic variety X. A smooth model is a smooth variety Y together with a proper, surjective map $\beta : Y \to X$, such that $\mathcal{E} := \beta^{-1}(\cup_{A \in \mathcal{A}} A)$ is a normal crossing divisor and $\beta_{|Y \setminus \mathcal{E}}$ a diffeomorphism.

Such smooth models are given by the wonderful model construction by DeConcini and Procesi. Idea is based on Fulton and MacPherson's "Compactification of Configuration Spaces":

The configuration space of n-points in an algebraic variety X is

$$C_n(X) = \{ (x_1, \ldots, x_n) \in X^n \mid x_i \neq x_j \text{ for all } i \neq j \}.$$

Fulton and MacPherson construct its compactification X[n] by a sequence of blow-ups along the (strict transforms) of diagonals of increasing dimension. A limiting point in $X[n] \setminus C_n(X)$ is encoded by a nested set of diagonals.

Wonderful models

Definition

Let \mathcal{A} be a linear arrangement in a vector space X. The wonderful model $(Y_{\mathcal{A}}, \beta)$ is defined as follows: The graph of the map

$$\pi_{\mathcal{A}}: X \setminus \bigcup_{A \in \mathcal{A}} A \longrightarrow \prod_{A \in \mathcal{A}} \mathbb{P}(X/A)$$

is locally closed in $X \times \prod_{A \in \mathcal{A}} \mathbb{P}(X/A)$. Define $Y_{\mathcal{A}}$ as its closure and $\beta : Y_{\mathcal{A}} \to X$ as the projection onto the first factor.

- ▶ An explicit construction is given by a sequence of blowups along (strict transforms of) elements of a building set $\mathcal{B} \subseteq \mathcal{A}$, giving local charts $(U_{\underline{i}}, \kappa_{\underline{i}})$, $\underline{i} = (\mathcal{N}, B)$, where \mathcal{N} is a nested set of elements of \mathcal{B} and B an adapted, marked basis of X.
- B controls the number of irreducible components of E ⊆ Y_B, while the B-nested sets describe a stratification of E.

Graphs and arrangements

Feichtner ('05): These notions can all be defined combinatorially! Either in terms of the intersection lattice of A,

$$\mathcal{L}_{\mathcal{A}} := \Big\{ \{A_1 \cap \cdots \cap A_k \mid A_i \in \mathcal{A}\}, \supseteq \Big\},$$

or, in our case, using the poset of divergent subgraphs of G.

Definition

Let G = (V, E) be a graph.

- Its superficial degree of divergence is defined by
 s(G) = dh₁(G) 2|E| (d = dim. of spacetime). G is called at most logarithmic if s(g) ≤ 0 holds for all g ⊆ G.
- The divergent poset of G is defined as

$$\mathcal{D}_{G} := \Big\{ \{ g \subseteq G \mid s(g) \leq 0 \}, \subseteq \Big\}.$$

Now consider the following Feynman rules:

Let G be a connected graph. Orient G and choose a spanning tree $t \subseteq G$.

The Feynman rules map Φ sends G to the pair (X_G, \tilde{v}_G) of a chain $X_G = (\mathbb{R}^d)^{E(t)}$ and a form defined by the rational function

$$v_G: x \longmapsto \prod_{e \in E(G)} y_e^{-\frac{d}{2}}, \quad y_e = \begin{cases} x_e & \text{if } e \in E(t) \\ \sum_{e' \in E(t_e)} \sigma_t(e') x_{e'} & \text{else.} \end{cases}$$

Here t_e is the unique path in t connecting the source and target vertices of e and $\sigma_t : E(t) \to \{\pm 1\}$ given by the orientation on G.

Graphs and arrangements

We avoid the infrared problem - $v_G \notin L^1(X_G)$ - by viewing v_G as (the kernel of) a distribution on X_G . On the other hand, the ultraviolet problem - $v_G \notin L^1_{loc}(X_G)$ - is characterized by the following

Proposition

Let G be at most logarithmic.

- ▶ v_G defines a distribution on $X_G \setminus \bigcup_{g \in D_G} A_g$, where $A_g := \{y_e = 0 \mid e \in E(g)\} \subseteq X_G$.
- ▶ D_G is a graded (distributive) lattice with join and meet operations given by

$$g \lor h := g \cup h$$
$$g \land h := g \cap h.$$

Wonderful combinatorics

Definition

Let \mathcal{L} be a lattice. $\mathcal{B} \subseteq \mathcal{L}$ is a building set for \mathcal{L} if

▶ for all $p \in \mathcal{L}_{>\hat{0}}$ and $\{q_1, \ldots, q_k\} = \max \mathcal{B}_{\leq p}$ there is an isomorphism of posets

$$\varphi_{A}: \prod_{i=1}^{k} [\hat{0}, q_{i}] \longrightarrow [\hat{0}, p]$$

with
$$\varphi_p(\hat{0},\ldots,q_j,\ldots,\hat{0}) = q_j$$
 for $j = 1,\ldots,k$.

▶ the ranking function on *L* satisfies

$$r(p) = \sum_{i=1}^k r(q_i).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In our case r is given by $\operatorname{codim}(A_g) = d(|E(g)| - h_1(g))$.

Wonderful combinatorics

Definition

Let \mathcal{B} be a building set in \mathcal{L} . A subset $\mathcal{N} \subseteq \mathcal{B}$ is \mathcal{B} -nested if for all subsets $\{p_1, \ldots, p_k\} \subseteq \mathcal{N}$ of pairwise incomparable elements their join $p_1 \vee \cdots \vee p_k$ exists (in \mathcal{L}) and does not belong to \mathcal{B} .

Definition

- A basis b of X is adapted to N if for all A ∈ N the set b ∩ A generates A ⇔ b is given by the edges of an adapted spanning tree, i.e. t ⊆ G such that t ∩ g is spanning for all g ∈ N.
- A marking of b is for every A ∈ N the choice of an element b_A ∈ b ∩ A ⇐⇒ for every g ∈ N a choice b_g ∈ {b_e}_{e∈E(t∩g)}.

Let $(Y_{\mathcal{B}}, \beta)$ be a wonderful model for a building set $\mathcal{B} \subseteq \mathcal{D} = \mathcal{D}_G$ and $v = v_G$ the Feynman distribution associated to a graph G.

Proposition

In local coordinates on $U_{\underline{i}}, \underline{i} = (\mathcal{N}, B)$, the pullback of $\tilde{v}^s = v^s |dx|$ (s = regularization parameter) along β is a density on Y given by

$$\begin{split} (\omega^{s})_{\underline{i}} &:= (\beta^{*}\tilde{v}^{s})_{\underline{i}} = f_{\underline{i}}^{s} \prod_{g \in \mathcal{N}} u_{g}(s, \cdot) |dx|, \\ u_{g}(s, x) &= |x_{g}|^{-1 + r(g)(s-1)}, x_{g} \text{ marked}. \end{split}$$

The map $f_{\underline{i}} : \kappa_{\underline{i}}(U_{\underline{i}}) \longrightarrow \mathbb{R}$ is in $L^1_{loc}(\kappa_{\underline{i}}(U_{\underline{i}}))$ and smooth in the marked variables x_g , $g \in \mathcal{N}$.

The next step is to study the Laurent expansion of ω^s . To formulate this we need a local version of graph contraction.

Definition

Let $g \subseteq G$ and \mathcal{N} be nested. The contraction relative to \mathcal{N} is defined as

$$g/\!/\mathcal{N} := egin{cases} g/(igcup_{\gamma\in\mathcal{N}_{< g}}\gamma) & ext{if } g\in\mathcal{N}, \ g/(g\capigcup_{\gamma\in\mathcal{N},\gamma\cap g< g}\gamma) & ext{else.} \end{cases}$$

For $\mathcal{J}\subseteq\mathcal{N}$ the poset $(\mathcal{N}/\!/\mathcal{J},\sqsubseteq)$ is given by the underlying set

$$\mathcal{N}//\mathcal{J} := \{g//\mathcal{J} \mid g \in \mathcal{N}\},$$

partially ordered by inclusion (in general $\sqsubseteq \neq \subseteq !$).

Theorem

- The Laurent expansion of ω^s at s = 1 has a pole of order N where N is the cardinality of the largest B-nested set.
- ► The coefficients ã_k in the principal part of the Laurent expansion

$$\omega^{s} = \sum_{-N \leq k} \tilde{a}_{k} (s-1)^{k}$$

are densities with supp $\tilde{a}_k = \bigcup_{|\mathcal{N}|=-k} \mathcal{E}_{\mathcal{N}}$ for k < 0.

Consider the minimal building set I(D) ⊆ D. Assume G ∈ I(D). Let N be the cardinality of a maximal nested set and denote by χ the constant function on the wonderful model Y_{I(D)}. Then

$$\langle \tilde{a}_{-N} | \chi \rangle = \sum_{|\mathcal{M}|=N} \prod_{\gamma \in \mathcal{M}} \mathcal{P}(\gamma / / \mathcal{M}).$$

Definition ("Local subtraction at fixed conditions")

In every chart $U_{\underline{i}}$ let $\nu = \{\nu_{\underline{g}}^{\underline{i}}\}_{g \in \mathcal{N}}$ denote a collection of smooth functions on $\kappa(U_{\underline{i}})$, each $\nu_{\overline{g}}^{\underline{i}}$ depending only on the coordinates x_e with $e \in E(t) \cap E(g \setminus \mathcal{N}_{\leq g})$, satisfying $\nu_{\overline{g}}^{\underline{i}}|_{x_g=0} = 1$ and compactly supported in all other directions. For $u \in \mathcal{D}'(\mathbb{R} \setminus \{0\})$ and $\mu \in \mathcal{D}([-1,1])$ let $r_{\mu}[u] \in \mathcal{D}'(\mathbb{R})$ denote the extended distribution

$$r_{\mu}[u]: \varphi \mapsto \langle u|\varphi \rangle - \langle u|\varphi(0)\mu \rangle.$$

The extension of ω^{s} is defined by

$$\begin{aligned} \mathcal{R}_{\nu}[\omega^{s}] \stackrel{\textit{loc.}}{=} & \mathcal{R}_{\nu}^{i}[f_{\underline{i}}^{s} \prod_{g \in \mathcal{N}} u_{g}(s) | dx |] := f_{\underline{i}}^{s} \prod_{g \in \mathcal{N}} r_{\nu_{g}^{i}}[u_{g}(s)] | dx | \\ &=: \sum_{\mathcal{J} \subseteq \mathcal{N}} (-1)^{|\mathcal{J}|} \nu_{\mathcal{J}}^{i} \cdot (\omega_{\underline{i}}^{s})_{\mathcal{E}_{\mathcal{J}}}. \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Theorem

- R_ν[ω^s] defines a density-valued holomorphic function in a neighborhood of s = 1.
- Define the renormalized Feynman rules by the map

$$\Phi_R: G \longmapsto (X_G, \mathscr{R}[v_G])$$

with $\mathscr{R}[v_G] := \beta_* R_{\nu}[\omega^s]_{|s=1}$ and evaluation on $\varphi \in \mathcal{D}(X_G)$ given by

 $\langle \mathscr{R}[\mathsf{v}_G] \mid \varphi \rangle = \langle \beta_* R_{\nu}[\omega^s]_{|s=1} \mid \varphi \rangle = \langle R_{\nu}[\omega^s]_{|s=1} \mid \beta^* \varphi \rangle.$

Then \mathscr{R} satisfies the Epstein-Glaser locality principle.

Renormalization group

What happens if the renormalization point ν is changed?

Theorem

Consider $(R_{\nu'} - R_{\nu})[\omega^s]$ for two choices of function families ν' and ν . Locally in $U_{\underline{i}}$, applied on a test function $\varphi = \beta^* \psi$ for $\psi \in \mathcal{D}(\beta(U_{\underline{i}}) \cap \kappa_{\underline{i}}(U_{\underline{i}}))$ we have

$$\langle (R^{\underline{i}}_{\nu'} - R^{\underline{i}}_{\overline{\nu}})[\omega^{s}_{\underline{i}}]|\varphi\rangle = \sum_{\emptyset \neq \mathcal{J} \subseteq \mathcal{N}} c_{\mathcal{J}} \langle R^{\underline{j}}_{\overline{\nu}}[(\omega^{s}_{G/\!/\mathcal{J}})_{\underline{j}}]|\delta_{\mathcal{J}}[\varphi]\rangle$$

with

$$c_{\mathcal{J}} := \prod_{\gamma \in \mathcal{J}} \langle \mathsf{R}^{\underline{k}}_{\nu} [(\omega^{s}_{\gamma / / \mathcal{J}})_{\underline{j}}] \mid \nu_{\gamma}' \rangle.$$

The indices $\underline{j}, \underline{k}$ correspond to $(\mathcal{N}//\mathcal{J})_{\sqsubseteq G//\mathcal{J}}$ and $(\mathcal{N}//\mathcal{J})_{\sqsubseteq \gamma//\mathcal{J}}$, respectively.

- Geometric ansatz put in combinatorial language
- Simplifies the "wonderful" construction and adds discrete toolbox
- ► Reconstruction of Epstein-Glaser method via models for K_n → Fulton-MacPherson compactification
- Dyson-Schwinger equations?
- Renormalization group equation / flow?
- Renormalization Hopf algebra? It encodes the stratification of the exceptional divisor *E*...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <