Wonderful Renormalization

Marko Berghoff, Humboldt Universität zu Berlin

Potsdam, February 2016

Introduction

QFT in position space / Causal perturbation theory

- Stueckelberg, Bogoliubov, Shirkov (late 50's): Axiomatic approach to S-matrix,

$$
S=1+\sum_{n>1} T_{n} .
$$

- Epstein and Glaser ('73): Renormalization of S translates into an extension (splitting) problem for distributions.
- Simplified version by Stora (ca.'00), used in QFT on curved spacetimes.

Introduction

- Bergbauer, Brunetti, Kreimer ('10): Version for single graphs.

Example (Euclidean ϕ_{4}^{4}-theory)

Feynman rules $\Phi: G \longmapsto \int \omega_{G}=\int d x d y d z \frac{1}{(x-y)^{4}(y-z)^{2} z^{4} x^{2}}$
What is $\int \omega_{G}$?

- Easy answer: ∞.
- Tricky answer: Find renormalized value ...

Introduction

Idea (Atiyah; Axelrod, Singer): Use a smooth model to arrange the divergences in a "nice" way, renormalize on this model, then push the result back to original spacetime.

Definition

Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ be a family of smooth subvarities in an algebraic variety X. A smooth model is a smooth variety Y together with a proper, surjective map $\beta: Y \rightarrow X$, such that $\mathcal{E}:=\beta^{-1}\left(\cup_{A \in \mathcal{A}} A\right)$ is a normal crossing divisor and $\beta_{\mid Y \backslash \mathcal{E}}$ a diffeomorphism.

Wonderful models

Such smooth models are given by the wonderful model construction by DeConcini and Procesi. Idea is based on Fulton and MacPherson's "Compactification of Configuration Spaces":

The configuration space of n-points in an algebraic variety X is

$$
C_{n}(X)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j} \text { for all } i \neq j\right\}
$$

Fulton and MacPherson construct its compactification $X[n]$ by a sequence of blow-ups along the (strict transforms) of diagonals of increasing dimension. A limiting point in $X[n] \backslash C_{n}(X)$ is encoded by a nested set of diagonals.

Wonderful models

Definition

Let \mathcal{A} be a linear arrangement in a vector space X. The wonderful model $\left(Y_{\mathcal{A}}, \beta\right)$ is defined as follows: The graph of the map

$$
\pi_{\mathcal{A}}: X \backslash \bigcup_{A \in \mathcal{A}} A \longrightarrow \prod_{A \in \mathcal{A}} \mathbb{P}(X / A)
$$

is locally closed in $X \times \prod_{A \in \mathcal{A}} \mathbb{P}(X / A)$. Define $Y_{\mathcal{A}}$ as its closure and $\beta: Y_{\mathcal{A}} \rightarrow X$ as the projection onto the first factor.

- An explicit construction is given by a sequence of blowups along (strict transforms of) elements of a building set $\mathcal{B} \subseteq \mathcal{A}$, giving local charts $\left(U_{i}, \kappa_{i}\right), \underline{i}=(\mathcal{N}, B)$, where \mathcal{N} is a nested set of elements of \mathcal{B} and B an adapted, marked basis of X.
- \mathcal{B} controls the number of irreducible components of $\mathcal{E} \subseteq Y_{\mathcal{B}}$, while the \mathcal{B}-nested sets describe a stratification of \mathcal{E}.

Graphs and arrangements

Feichtner ('05): These notions can all be defined combinatorially! Either in terms of the intersection lattice of \mathcal{A},

$$
\mathcal{L}_{\mathcal{A}}:=\left\{\left\{A_{1} \cap \cdots \cap A_{k} \mid A_{i} \in \mathcal{A}\right\}, \supseteq\right\}
$$

or, in our case, using the poset of divergent subgraphs of G.
Definition
Let $G=(V, E)$ be a graph.

- Its superficial degree of divergence is defined by $s(G)=d h_{1}(G)-2|E|(d=\operatorname{dim}$. of spacetime $)$. G is called at most logarithmic if $s(g) \leq 0$ holds for all $g \subseteq G$.
- The divergent poset of G is defined as

$$
\mathcal{D}_{G}:=\{\{g \subseteq G \mid s(g) \leq 0\}, \subseteq\} .
$$

Graphs and arrangements

Now consider the following Feynman rules:
Let G be a connected graph. Orient G and choose a spanning tree $t \subseteq G$.
The Feynman rules map Φ sends G to the pair $\left(X_{G}, \tilde{v}_{G}\right)$ of a chain $X_{G}=\left(\mathbb{R}^{d}\right)^{E(t)}$ and a form defined by the rational function

$$
v_{G}: x \longmapsto \prod_{e \in E(G)} y_{e}^{-\frac{d}{2}}, \quad y_{e}= \begin{cases}x_{e} & \text { if } e \in E(t) \\ \sum_{e^{\prime} \in E\left(t_{e}\right)} \sigma_{t}\left(e^{\prime}\right) x_{e^{\prime}} & \text { else } .\end{cases}
$$

Here t_{e} is the unique path in t connecting the source and target vertices of e and $\sigma_{t}: E(t) \rightarrow\{ \pm 1\}$ given by the orientation on G.

Graphs and arrangements

We avoid the infrared problem - $v_{G} \notin L^{1}\left(X_{G}\right)$ - by viewing v_{G} as (the kernel of) a distribution on X_{G}. On the other hand, the ultraviolet problem - $v_{G} \notin L_{\text {loc }}^{1}\left(X_{G}\right)$ - is characterized by the following

Proposition

Let G be at most logarithmic.

- v_{G} defines a distribution on $X_{G} \backslash \bigcup_{g \in \mathcal{D}_{G}} A_{g}$, where $A_{g}:=\left\{y_{e}=0 \mid e \in E(g)\right\} \subseteq X_{G}$.
- \mathcal{D}_{G} is a graded (distributive) lattice with join and meet operations given by

$$
\begin{aligned}
& g \vee h:=g \cup h \\
& g \wedge h:=g \cap h .
\end{aligned}
$$

Wonderful combinatorics

Definition

Let \mathcal{L} be a lattice. $\mathcal{B} \subseteq \mathcal{L}$ is a building set for \mathcal{L} if

- for all $p \in \mathcal{L}_{>0}$ and $\left\{q_{1}, \ldots, q_{k}\right\}=\max \mathcal{B}_{\leq p}$ there is an isomorphism of posets

$$
\varphi_{A}: \prod_{i=1}^{k}\left[\hat{0}, q_{i}\right] \longrightarrow[\hat{0}, p]
$$

with $\varphi_{p}\left(\hat{0}, \ldots, q_{j}, \ldots, \hat{0}\right)=q_{j}$ for $j=1, \ldots, k$.

- the ranking function on \mathcal{L} satisfies

$$
r(p)=\sum_{i=1}^{k} r\left(q_{i}\right)
$$

In our case r is given by $\operatorname{codim}\left(A_{g}\right)=d\left(|E(g)|-h_{1}(g)\right)$.

Wonderful combinatorics

Definition

Let \mathcal{B} be a building set in \mathcal{L}. A subset $\mathcal{N} \subseteq \mathcal{B}$ is \mathcal{B}-nested if for all subsets $\left\{p_{1}, \ldots, p_{k}\right\} \subseteq \mathcal{N}$ of pairwise incomparable elements their join $p_{1} \vee \cdots \vee p_{k}$ exists (in \mathcal{L}) and does not belong to \mathcal{B}.

Definition

- A basis b of X is adapted to \mathcal{N} if for all $A \in \mathcal{N}$ the set $b \cap A$ generates $A \Longleftrightarrow b$ is given by the edges of an adapted spanning tree, i.e. $t \subseteq G$ such that $t \cap g$ is spanning for all $g \in \mathcal{N}$.
- A marking of b is for every $A \in \mathcal{N}$ the choice of an element $b_{A} \in b \cap A \Longleftrightarrow$ for every $g \in \mathcal{N}$ a choice $b_{g} \in\left\{b_{e}\right\}_{e \in E(t \cap g)}$.

Wonderful renormalization

Let $\left(Y_{\mathcal{B}}, \beta\right)$ be a wonderful model for a building set $\mathcal{B} \subseteq \mathcal{D}=\mathcal{D}_{G}$ and $v=v_{G}$ the Feynman distribution associated to a graph G.
Proposition
In local coordinates on $U_{\underline{i}}, \underline{i}=(\mathcal{N}, B)$, the pullback of $\tilde{v}^{s}=v^{s}|d x|$ ($s=$ regularization parameter) along β is a density on Y given by

$$
\begin{aligned}
& \left(\omega^{s}\right)_{\underline{i}}:=\left(\beta^{*} \tilde{v}^{s}\right)_{\underline{i}}=f_{\underline{i}}^{s} \prod_{g \in \mathcal{N}} u_{g}(s, \cdot)|d x|, \\
& u_{g}(s, x)=\left|x_{g}\right|^{-1+r(g)(s-1)}, x_{g} \text { marked. }
\end{aligned}
$$

The map $f_{\underline{i}}: \kappa_{\underline{i}}\left(U_{\underline{i}}\right) \longrightarrow \mathbb{R}$ is in $L_{\text {loc }}^{1}\left(\kappa_{\underline{i}}\left(U_{\underline{i}}\right)\right)$ and smooth in the marked variables $x_{g}, g \in \mathcal{N}$.

Wonderful renormalization

The next step is to study the Laurent expansion of ω^{s}. To formulate this we need a local version of graph contraction.
Definition
Let $g \subseteq G$ and \mathcal{N} be nested. The contraction relative to \mathcal{N} is defined as

$$
g / / \mathcal{N}:= \begin{cases}g /\left(\bigcup_{\gamma \in \mathcal{N}_{<g}} \gamma\right) & \text { if } g \in \mathcal{N} \\ g /\left(g \cap \bigcup_{\gamma \in \mathcal{N}, \gamma \cap g<g} \gamma\right) & \text { else. }\end{cases}
$$

For $\mathcal{J} \subseteq \mathcal{N}$ the poset $(\mathcal{N} / / \mathcal{J}, \sqsubseteq)$ is given by the underlying set

$$
\mathcal{N} / / \mathcal{J}:=\{g / / \mathcal{J} \mid g \in \mathcal{N}\}
$$

partially ordered by inclusion (in general $\sqsubseteq \neq \subseteq!$).

Wonderful renormalization

Theorem

- The Laurent expansion of ω^{s} at $s=1$ has a pole of order N where N is the cardinality of the largest \mathcal{B}-nested set.
- The coefficients \tilde{a}_{k} in the principal part of the Laurent expansion

$$
\omega^{s}=\sum_{-N \leq k} \tilde{a}_{k}(s-1)^{k}
$$

are densities with supp $\tilde{a}_{k}=\bigcup_{|\mathcal{N}|=-k} \mathcal{E}_{\mathcal{N}}$ for $k<0$.

- Consider the minimal building set $I(\mathcal{D}) \subseteq \mathcal{D}$. Assume $G \in I(\mathcal{D})$. Let N be the cardinality of a maximal nested set and denote by χ the constant function on the wonderful model $Y_{I(\mathcal{D})}$. Then

$$
\left\langle\tilde{a}_{-N} \mid \chi\right\rangle=\sum_{|\mathcal{M}|=N} \prod_{\gamma \in \mathcal{M}} \mathcal{P}(\gamma / / \mathcal{M})
$$

Wonderful renormalization

Definition ("Local subtraction at fixed conditions")
In every chart $U_{\underline{i}}$ let $\nu=\left\{\nu_{\underline{g}}^{\underline{i}}\right\}_{g \in \mathcal{N}}$ denote a collection of smooth functions on $\kappa\left(U_{\dot{I}}\right)$, each $\nu \frac{1}{g}$ depending only on the coordinates x_{e} with $e \in E(t) \cap E\left(g \backslash \mathcal{N}_{<g}\right)$, satisfying $\left.\nu \frac{i}{g} \right\rvert\, x_{g}=0=1$ and compactly supported in all other directions. For $u \in \mathcal{D}^{\prime}(\mathbb{R} \backslash\{0\})$ and $\mu \in \mathcal{D}([-1,1])$ let $r_{\mu}[u] \in \mathcal{D}^{\prime}(\mathbb{R})$ denote the extended distribution

$$
r_{\mu}[u]: \varphi \mapsto\langle u \mid \varphi\rangle-\langle u \mid \varphi(0) \mu\rangle .
$$

The extension of ω^{s} is defined by

$$
\begin{gathered}
R_{\nu}\left[\omega^{s}\right] \stackrel{\text { loc. }}{=} R_{\bar{\nu}}^{i}\left[f_{\underline{\underline{i}}}^{s} \prod_{g \in \mathcal{N}} u_{g}(s)|d x|\right]:=f_{\underline{i}}^{s} \prod_{g \in \mathcal{N}} r_{\nu \bar{g}}^{i}\left[u_{g}(s)\right]|d x| \\
=: \sum_{\mathcal{J} \subseteq \mathcal{N}}(-1)^{|\mathcal{J}|} \nu_{\mathcal{J}}^{i} \cdot\left(\omega_{\underline{i}}^{s}\right)_{\mathcal{E}_{\mathcal{J}}} .
\end{gathered}
$$

Wonderful renormalization

Theorem

- $R_{\nu}\left[\omega^{s}\right]$ defines a density-valued holomorphic function in a neighborhood of $s=1$.
- Define the renormalized Feynman rules by the map

$$
\Phi_{R}: G \longmapsto\left(X_{G}, \mathscr{R}\left[v_{G}\right]\right)
$$

with $\mathscr{R}\left[v_{G}\right]:=\beta_{*} R_{\nu}\left[\omega^{s}\right]_{\mid s=1}$ and evaluation on $\varphi \in \mathcal{D}\left(X_{G}\right)$ given by

$$
\left\langle\mathscr{R}\left[v_{G}\right] \mid \varphi\right\rangle=\left\langle\beta_{*} R_{\nu}\left[\omega^{s}\right]_{\mid s=1} \mid \varphi\right\rangle=\left\langle R_{\nu}\left[\omega^{s}\right]_{\mid s=1} \mid \beta^{*} \varphi\right\rangle
$$

Then \mathscr{R} satisfies the Epstein-Glaser locality principle.

Renormalization group

What happens if the renormalization point ν is changed?
Theorem
Consider $\left(R_{\nu^{\prime}}-R_{\nu}\right)\left[\omega^{s}\right]$ for two choices of function families ν^{\prime} and ν. Locally in $U_{\underline{i}}$, applied on a test function $\varphi=\beta^{*} \psi$ for $\psi \in \mathcal{D}\left(\beta\left(U_{\underline{i}}\right) \cap \kappa_{\underline{i}}\left(U_{\underline{i}}\right)\right)$ we have

$$
\left\langle\left(R_{\nu^{\prime}}^{i}-R_{\bar{\nu}}^{i}\right)\left[\omega_{\underline{\underline{I}}}^{s}\right] \mid \varphi\right\rangle=\sum_{\emptyset \neq \mathcal{J} \subseteq \mathcal{N}} c_{\mathcal{J}}\left\langle R_{\bar{\nu}}^{j}\left[\left(\omega_{G / / \mathcal{J}}^{s}\right)_{j}\right] \mid \delta_{\mathcal{J}}[\varphi]\right\rangle
$$

with

$$
c_{\mathcal{J}}:=\prod_{\gamma \in \mathcal{J}}\left\langle R_{\bar{\nu}}^{k}\left[\left(\omega_{\gamma / / \mathcal{J}}^{s}\right)_{j}\right] \mid \nu_{\gamma}^{\prime}\right\rangle .
$$

The indices $\underline{j}, \underline{k}$ correspond to $(\mathcal{N} / / \mathcal{J})_{\sqsubseteq G / / \mathcal{J}}$ and $(\mathcal{N} / / \mathcal{J})_{\sqsubseteq \gamma / / \mathcal{J}}$, respectively.

Conclusions \& Outlook

- Geometric ansatz put in combinatorial language
- Simplifies the "wonderful" construction and adds discrete toolbox
- Reconstruction of Epstein-Glaser method via models for K_{n} \rightarrow Fulton-MacPherson compactification
- Dyson-Schwinger equations?
- Renormalization group equation / flow?
- Renormalization Hopf algebra? It encodes the stratification of the exceptional divisor $\mathcal{E} \ldots$

