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Introduction

QFT in position space / Causal perturbation theory

I Stueckelberg, Bogoliubov, Shirkov (late 50’s): Axiomatic
approach to S-matrix,

S = 1 +
∑
n>1

Tn.

I Epstein and Glaser (’73): Renormalization of S translates into
an extension (splitting) problem for distributions.

I Simplified version by Stora (ca.’00), used in QFT on curved
spacetimes.



Introduction

I Bergbauer, Brunetti, Kreimer (’10): Version for single graphs.

Example (Euclidean φ4
4-theory)

x

y z

0

G

Feynman rules Φ : G 7−→
∫
ωG =

∫
dxdydz 1

(x−y)4(y−z)2z4x2

What is
∫
ωG?

I Easy answer: ∞.

I Tricky answer: Find renormalized value ...



Introduction

Idea (Atiyah; Axelrod, Singer): Use a smooth model to arrange the
divergences in a ”nice” way, renormalize on this model, then push
the result back to original spacetime.

Definition
Let A = {A1, . . . ,Ak} be a family of smooth subvarities in an
algebraic variety X . A smooth model is a smooth variety Y
together with a proper, surjective map β : Y → X , such that
E := β−1(∪A∈AA) is a normal crossing divisor and β|Y \E a
diffeomorphism.



Wonderful models

Such smooth models are given by the wonderful model
construction by DeConcini and Procesi. Idea is based on Fulton
and MacPherson’s “Compactification of Configuration Spaces”:

The configuration space of n-points in an algebraic variety X is

Cn(X ) = {(x1, . . . , xn) ∈ X n | xi 6= xj for all i 6= j}.

Fulton and MacPherson construct its compactification X [n] by a
sequence of blow-ups along the (strict transforms) of diagonals of
increasing dimension. A limiting point in X [n] \ Cn(X ) is encoded
by a nested set of diagonals.



Wonderful models

Definition
Let A be a linear arrangement in a vector space X . The wonderful
model (YA, β) is defined as follows: The graph of the map

πA : X \
⋃
A∈A

A −→
∏
A∈A

P(X/A)

is locally closed in X ×
∏

A∈A P(X/A). Define YA as its closure
and β : YA → X as the projection onto the first factor.

I An explicit construction is given by a sequence of blowups
along (strict transforms of) elements of a building set B ⊆ A,
giving local charts (Ui , κi ), i = (N ,B), where N is a nested
set of elements of B and B an adapted, marked basis of X .

I B controls the number of irreducible components of E ⊆ YB,
while the B-nested sets describe a stratification of E .



Graphs and arrangements

Feichtner (’05): These notions can all be defined combinatorially!
Either in terms of the intersection lattice of A,

LA :=
{
{A1 ∩ · · · ∩ Ak | Ai ∈ A},⊇

}
,

or, in our case, using the poset of divergent subgraphs of G .

Definition
Let G = (V ,E ) be a graph.

I Its superficial degree of divergence is defined by
s(G ) = dh1(G )− 2|E | (d = dim. of spacetime). G is called at
most logarithmic if s(g) ≤ 0 holds for all g ⊆ G .

I The divergent poset of G is defined as

DG :=
{
{g ⊆ G | s(g) ≤ 0},⊆

}
.



Graphs and arrangements

Now consider the following Feynman rules:
Let G be a connected graph. Orient G and choose a spanning tree
t ⊆ G .
The Feynman rules map Φ sends G to the pair (XG , ṽG ) of a chain
XG = (Rd)E(t) and a form defined by the rational function

vG : x 7−→
∏

e∈E(G)

y
− d

2
e , ye =

{
xe if e ∈ E (t)∑

e′∈E(te)
σt(e

′)xe′ else.

Here te is the unique path in t connecting the source and target
vertices of e and σt : E (t)→ {±1} given by the orientation on G .



Graphs and arrangements

We avoid the infrared problem - vG /∈ L1(XG ) - by viewing vG as
(the kernel of) a distribution on XG . On the other hand, the
ultraviolet problem - vG /∈ L1loc(XG ) - is characterized by the
following

Proposition

Let G be at most logarithmic.

I vG defines a distribution on XG \
⋃

g∈DG
Ag , where

Ag := {ye = 0 | e ∈ E (g)} ⊆ XG .

I DG is a graded (distributive) lattice with join and meet
operations given by

g ∨ h :=g ∪ h

g ∧ h :=g ∩ h.



Wonderful combinatorics

Definition
Let L be a lattice. B ⊆ L is a building set for L if

I for all p ∈ L>0̂ and {q1, . . . , qk} = max B≤p there is an
isomorphism of posets

ϕA :
k∏

i=1

[0̂, qi ] −→ [0̂, p]

with ϕp(0̂, . . . , qj , . . . , 0̂) = qj for j = 1, . . . , k .

I the ranking function on L satisfies

r(p) =
k∑

i=1

r(qi ).

In our case r is given by codim(Ag ) = d(|E (g)| − h1(g)).



Wonderful combinatorics

Definition
Let B be a building set in L. A subset N ⊆ B is B-nested if for all
subsets {p1, . . . , pk} ⊆ N of pairwise incomparable elements their
join p1 ∨ · · · ∨ pk exists (in L) and does not belong to B.

Definition

I A basis b of X is adapted to N if for all A ∈ N the set b ∩ A
generates A ⇐⇒ b is given by the edges of an adapted
spanning tree, i.e. t ⊆ G such that t ∩ g is spanning for all
g ∈ N .

I A marking of b is for every A ∈ N the choice of an element
bA ∈ b ∩ A ⇐⇒ for every g ∈ N a choice bg ∈ {be}e∈E(t∩g).



Wonderful renormalization

Let (YB, β) be a wonderful model for a building set B ⊆ D = DG

and v = vG the Feynman distribution associated to a graph G .

Proposition

In local coordinates on Ui , i = (N ,B), the pullback of ṽ s = v s |dx |
(s = regularization parameter) along β is a density on Y given by

(ωs)i := (β∗ṽ s)i = f si
∏
g∈N

ug (s, ·)|dx |,

ug (s, x) = |xg |−1+r(g)(s−1), xg marked.

The map fi : κi (Ui ) −→ R is in L1loc(κi (Ui )) and smooth in the
marked variables xg , g ∈ N .



Wonderful renormalization

The next step is to study the Laurent expansion of ωs . To
formulate this we need a local version of graph contraction.

Definition
Let g ⊆ G and N be nested. The contraction relative to N is
defined as

g//N :=

{
g/(

⋃
γ∈N<g

γ) if g ∈ N ,
g/(g ∩

⋃
γ∈N ,γ∩g<g γ) else.

For J ⊆ N the poset (N//J ,v) is given by the underlying set

N//J := {g//J | g ∈ N},

partially ordered by inclusion (in general v6=⊆!).



Wonderful renormalization

Theorem

I The Laurent expansion of ωs at s = 1 has a pole of order N
where N is the cardinality of the largest B-nested set.

I The coefficients ãk in the principal part of the Laurent
expansion

ωs =
∑
−N≤k

ãk(s − 1)k

are densities with supp ãk =
⋃
|N |=−k EN for k < 0.

I Consider the minimal building set I (D) ⊆ D. Assume
G ∈ I (D). Let N be the cardinality of a maximal nested set
and denote by χ the constant function on the wonderful
model YI (D). Then

〈ã−N |χ〉 =
∑
|M|=N

∏
γ∈M

P(γ//M).



Wonderful renormalization

Definition (“Local subtraction at fixed conditions”)

In every chart Ui let ν = {ν ig}g∈N denote a collection of smooth

functions on κ(Ui ), each ν
i
g depending only on the coordinates xe

with e ∈ E (t) ∩ E (g \ N<g ), satisfying ν
i
g |xg=0 = 1 and compactly

supported in all other directions. For u ∈ D′(R \ {0}) and
µ ∈ D([−1, 1]) let rµ[u] ∈ D′(R) denote the extended distribution

rµ[u] : ϕ 7→ 〈u|ϕ〉 − 〈u|ϕ(0)µ〉.

The extension of ωs is defined by

Rν [ωs ]
loc.
= R i

ν [f si
∏
g∈N

ug (s)|dx |] := f si
∏
g∈N

r
ν
i
g
[ug (s)]|dx |

=:
∑
J⊆N

(−1)|J |ν
i
J · (ω

s
i )EJ .



Wonderful renormalization

Theorem

I Rν [ωs ] defines a density-valued holomorphic function in a
neighborhood of s = 1.

I Define the renormalized Feynman rules by the map

ΦR : G 7−→ (XG ,R[vG ])

with R[vG ] := β∗Rν [ωs ]|s=1 and evaluation on ϕ ∈ D(XG )
given by

〈R[vG ] | ϕ〉 = 〈β∗Rν [ωs ]|s=1 | ϕ〉 = 〈Rν [ωs ]|s=1 | β∗ϕ〉.

Then R satisfies the Epstein-Glaser locality principle.



Renormalization group

What happens if the renormalization point ν is changed?

Theorem
Consider (Rν′ − Rν)[ωs ] for two choices of function families ν ′ and
ν. Locally in Ui , applied on a test function ϕ = β∗ψ for
ψ ∈ D(β(Ui ) ∩ κi (Ui )) we have

〈(R i
ν′ − R i

ν)[ωs
i ]|ϕ〉 =

∑
∅6=J⊆N

cJ 〈R
j
ν [(ωs

G//J )j ]|δJ [ϕ]〉

with
cJ :=

∏
γ∈J
〈Rk

ν [(ωs
γ//J )j ] | ν ′γ〉.

The indices j , k correspond to (N//J )vG//J and (N//J )vγ//J ,
respectively.



Conclusions & Outlook

I Geometric ansatz put in combinatorial language

I Simplifies the ”wonderful” construction and adds discrete
toolbox

I Reconstruction of Epstein-Glaser method via models for Kn

→ Fulton-MacPherson compactification

I Dyson-Schwinger equations?

I Renormalization group equation / flow?

I Renormalization Hopf algebra? It encodes the stratification of
the exceptional divisor E ...


