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The Φ4
3 equation

Our goal: Prove that Φ4
3 measure is invariant for Φ4

3 equation

• Spatially periodic Φ4
3 equation on R+ × R3 is

∂tΦ = ∆Φ +∞Φ− Φ3 + ξ

where ξ is space-time white noise, i.e. random Gaussian field,

Eξ(t, x)ξ(s, y) = δt−sδx−y

• Problem: Low regularity of noise:
ξ ∈ C−

5
2
− ⇒ Φ ∈ C−

1
2
− ⇒ Φ3 is undefined!

• The bilinear map

Cα × Cβ 3 (u, v) 7→ uv

is well defined iff α+ β > 0



Solution of Φ4
3 equation

Solution is defined as limit of renormalised equations

∂tΦε = ∆Φε + CεΦε − Φ3
ε + ξε

I ξε is a mollification of ξ so that ξε → ξ as ε→ 0

I Cε are renormalisation constants such that Cε →∞

Notion of solution was provided by
I Hairer ’13 (regularity structures)
I Catellier, Chouk ’13 (paracontrolled distributions)
I Kupiainen ’15 (renormalisation group techniques)



The Φ4
3 measure

• Approximation of Φ4
3 measure on dyadic lattice Z3

ε = (εZ)3:

µε(dΦε) ∼ e−Sε(Φε)
∏
x∈Z3

ε

dΦε(x)

• Sε acts on functions Φε ∈ RZ3
ε by

Sε(Φε) =
ε

2

∑
x∼y

(
Φε(x)−Φε(y)

)2−Cεε3

2

∑
x∈Z3

ε

Φε(x)2+
ε3

4

∑
x∈Z3

ε

Φε(x)4

• Formally Sε(Φε) is a finite difference approximation of

S(Φ) =
1

2

∫
R3

(
∇Φ(x)

)2
dx− ∞

2

∫
R3

Φ(x)2 dx+
1

4

∫
R3

Φ(x)4 dx

Park ’75: the Φ4
3 measure µ is given by µε ⇒ µ on S ′



Our strategy of proof

Brydges, Fröhlich, Sokal ’83: Moment bounds for µε,
implying µε ⇒ µ on C−

1
2
−

Our strategy of proof:
1. Consider spatial discretisations with invariant measures µε:

∂tΦε = ∆εΦε + CεΦε − Φ3
ε + ξε

2. Prove that Φε → Φ in C([0, T ], C−
1
2
−) if Φε(0)→ Φ(0) in

C−
1
2
−

3. Take initial conditions Φε(0) ∼ µε and Φ(0) ∼ µ.
Conclude from Φε(0)→ Φ(0) that µ is invariant for Φ4

3

equation (argument à la Bourgain ’94 for non-linear
Schrödinger equation)

Remark: Φε(0)→ Φ(0) in S ′ is not sufficient.
The result by BFS is important!



Discrete Φ4
3 equation

Consider periodic spatial discretisations of Φ4
3 equation

dΦε(t, x) =
(

∆εΦε + CεΦε − Φ3
ε

)
(t, x)dt+ ε−

3
2dWε(t, x)

on t ∈ R+ and x ∈ Z3
ε (dyadic grid), where

I ∆ε is nearest-neighbour discrete Laplacian

∆εΦε(x) = ε−2
∑
y∼x

(
Φε(y)− Φε(x)

)
I Wε(·, x), x ∈ Z3

ε, are independent (up to periodicity)
Brownian motions

Fact: µε is an invariant measure for this equation



Convergence of discretised Φ4
3 equations

Theorem (Hairer, M. ’15)
We assume that

I Φ is the unique maximal solution of Φ4
3 on [0, T ∗)

I ‖Φε(0)− Φ(0)‖Cη → 0 almost surely for some η > − 2
3

Then for every α < − 1
2

I there is a sequence Cε ∼ ε−1 of renormalisation constants
I there is a sequence of stopping times Tε satisfying limε→0 Tε = T ∗ in

probability
such that one has the limit in probability

lim
ε→0
‖Φε − Φ‖Cη̄([0,Tε],Cα) = 0

for some blow-up rate η̄ at t = 0

Zhu, Zhu ’15: The convergence result using paracontrolled
distributions

Remarks:
I Need a framework for spatial discretisations of rough SPDEs
I Want to work in spaces C([0, T ], Cα)



Discrete models

For a regularity structure (T ,G) a discrete model (Πε,Γε,Σε)
consists of

I linear maps Πε,t
x : T → RZdε for t ∈ R, x ∈ Zdε

I maps Γε,txy ∈ G for t ∈ R and x, y ∈ Zdε such that

Γε,txx = 1 Γε,txy Γε,tyz = Γε,txz Πε,t
y = Πε,t

x Γε,txy

I maps Σε,st
x ∈ G for s, t ∈ R and x ∈ Zdε such that

Σε,tt
x = 1 Σε,sr

x Σε,rt
x = Σε,st

x Σε,st
x Γε,txy = Γε,sxyΣε,st

y

For x, y ∈ Zdε , all test-functions ϕ and locally uniformly in time:

|〈Πε,t
x τ, ϕ

λ
x〉ε| . λ|τ | , λ ∈ [ε, 1]

‖Γε,txyτ‖m . |x− y||τ |−m ‖Σε,st
x τ‖m .

(
|t− s|

1
2 ∨ ε

)|τ |−m



Relation to original models

We can define models (Π,Γ,Σ) on Rd as ε = 0

If (Π̃, Γ̃) is the original model on Rd+1, then
I Γ̃ is equivalent to the pair (Γ,Σ):

Γ̃(t,x),(s,y) = ΓtxyΣ
ts
y = Σts

x Γsxy

Γtxy = Γ̃(t,x),(t,y) Σst
x = Γ̃(s,x),(t,x)

I From Π̃ to Π (formally):(
Πt
xτ
)
(y) =

(
Π̃(t,x)τ

)
(t, y)

Remark: Πt
x contains “less information” than Π̃(t,x)

I From Π to Π̃: (
Π̃(t,x)τ

)
(s, y) =

(
Πs
xΣst

x τ
)
(y)



Discrete modeled distributions

• Hε : (0, T ]× Zdε → T is a modelled distribution from Dη,γT,ε if

‖Hε
t (x)‖m . (t ∨ ε2)

(η−m)∧0
2 , m < γ

‖Hε
t (x)− Γε,txyH

ε
t (y)‖m . (t ∨ ε2)

η−γ
2 |x− y|γ−m

‖Hε
t (x)− Σε,tsx Hε

s (x)‖m . (s ∨ t ∨ ε2)
η−γ

2

(
|t− s| 12 ∨ ε

)γ−m
• The discrete reconstruction map(

RεHε
)
t
(x) =

(
Πε,t
x Hε

t (x)
)
(x) , (t, x) ∈ (0, T ]× Zdε

Discrete reconstruction theorem
For all (t, x) ∈ (0, T ]× Zdε and all test functions ϕ one has

|〈
(
RεHε

)
t
−Πε,t

x Hε
t (x), ϕλx〉ε| . λγ(t ∨ ε2)

η−γ
2 , λ ∈ [ε, 1]

Remark: The proof requires a discrete analogue of wavelets



Discrete heat kernel

• The discrete heat kernel on (t, x) ∈ R× Zdε :

Gεt (x) = ε−d1t≥0

(
et∆εδ0,·

)
(x)

where δ is Kronecker’s delta

• Replacing δ0,· by a suitable smooth function we write
Gε = Kε︸︷︷︸

localised

+ Rε︸︷︷︸
C∞

• For ε = 2−N we expand Kε as

Kε = K̊ε︸︷︷︸
discrete

+ K̄ε︸︷︷︸
C∞

= K̊ε +

N−1∑
n=0

Kε,n

• in such a way that for some c > 0:

supp(K̊ε) ⊂ Box(0, cε) |K̊ε(z)| . ε−d

supp(Kε,n) ⊂ Box(0, c2−n) |DkKε,n(z)| . 2(d+|k|)n



Expansion of the kernel

K̊ε

Kε,N−1

Kε,0

Rε

∼ ε

∼ 2ε

∼ 1

t

x



Abstract integration
Let I : T → T be an abstract integration map, i.e. I : Tα → Tα+2

Our aim: To define ΠεIτ , ΓεIτ and ΣεIτ by Πετ , Γετ , Σετ and Kε

• We define(
Πε,t
x Iτ

)
(y) =

∫
R
〈Πε,s

x Σε,stx τ,Kε
t−s(y − ·)〉εds−Πε,t

x

(
J εt,xτ

)
(y)︸ ︷︷ ︸

polynomial

• where the polynomial part is given by

J εt,xτ = 1

∫
R
〈Πε,s

x Σε,stx τ, K̊ε
t−s(x− ·)〉εds

+
∑

|k|<|τ |+2

Xk

k!

∫
R
〈Πε,s

x Σε,stx τ,DkK̄ε
t−s(x− ·)〉εds

• Furthermore, we assume

Γε,txy
(
I + J εt,y

)
=
(
I + J εt,x

)
Γε,txy , Σε,stx

(
I + J εt,x

)
=
(
I + J εs,x

)
Σε,stx



Abstract integration, cont.
• To get the required estimates we write(

Πε,t
x Iτ

)
(y) =

∫
R
〈Πε,s

x Σε,stx τ, K̊ε
t−s(y − ·)〉εds︸ ︷︷ ︸

=(Π̊ε,tx Iτ)(y)

+
(
Π̄ε,t
x Iτ

)
(y) + ...

• 〈Π̄ε,t
x Iτ, ϕλx〉ε is bounded similarly to continuous case and∣∣〈Π̊ε,t

x Iτ, ϕλx〉ε
∣∣ . ε|τ |+2 . λ|τ |+2 ,

if |τ |+ 2 > 0 and λ ≥ ε. Moreover,∣∣〈(Π̊ε,t
x − Π̊ε,s

x )Iτ, ϕλx〉ε
∣∣ ≤ ∣∣〈Π̊ε,t

x Iτ, ϕλx〉ε
∣∣+
∣∣〈Π̊ε,s

x Iτ, ϕλx〉ε
∣∣

. ε|τ |+2 . λ|τ |+2−δ(|t− s| 12 ∨ ε)δ
• Somewhat similarly we can build a map Kεγ : Dη,γT,ε → D

η+2,γ+2
T,ε s.t.

Rεt
(
KεγHε

)
t
(x) =

∫ t

0

〈RεsHε
s ,K

ε
t−s(x− ·)〉εds



Analysis of discretised SPDEs
Consider spatial discretisations of a locally subcritical equation

∂tuε = ∆εuε + Fε(uε, ξε) , uε(0) = u0
ε

Algorithm:

1. Build a regularity structure (T ,G) (as in continuous case)

2. Remove elements from T which do not correspond to functions
in time, e.g. Ξ corresponds to ξε

3. Lift canonically ξε to a discrete model Zε = (Πε,Γε,Σε)

4. Reformulate the equation

Uε = KεγFε(Uε,Ξ) + polynomial︸ ︷︷ ︸
comes from u0

ε and Rε

where Uε is a modeled distribution and

uε(t, x) =
(
RεUε

)
t
(x)

5. Show that u0
ε → u0 and Zε → Z (after renormalisation)

6. Conclude that Uε → U in Dη,γT,ε (fixed point argument) and uε → u



Conclusions and outlooks

Conclusions:

I The Φ4
3 measure is invariant for the Φ4

3 equation
I For almost every (wrt Φ4

3 measure) initial condition, the
solution to Φ4

3 equation is almost surely global in time
I The framework can be applied to many rough SPDEs,

incl. KPZ, Burgers, parabolic Anderson etc.

Question:
I What about non-Gaussian and non-stationary noise, e.g.

martingale-driven equations coming from particle
systems?


