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The @1 equation

Our goal: Prove that 3 measure is invariant for ®5 equation

e Spatially periodic ®3 equation on R, x R? is
NP = AP + cod — &3 + ¢
where ¢ is space-time white noise, i.e. random Gaussian field,

Ef(t, :1:)5(5, y) - 6t*551*y

e Problem: Low regularity of noise:
£eCi™ = ®eCz = & isundefined!

e The bilinear map
C*x CP > (u,v) — uww

is well defined iff a + 8 > 0



Solution of @3 equation

Solution is defined as limit of renormalised equations
P, = AP, + C. P, — B3 + £,

» £ is a mollification of ¢ sothat &, — éase — 0
» (. are renormalisation constants such that C. — oo

Notion of solution was provided by
» Hairer 13 (regularity structures)
» Catellier, Chouk '13 (paracontrolled distributions)
» Kupiainen ’15 (renormalisation group techniques)



The &1 measure

e Approximation of 3 measure on dyadic lattice Z3 = (¢Z)3:

fie (d®.) @) TT do<(

x€Z3

e S. acts on functions ®, € R% by

€ 3 3
S(@) = & 30 (Be)-0.)) T Y @) Y ()’

vy z€Z3 z€Z3

e Formally S.(®.) is a finite difference approximation of

1

S(®) = 3 /]RS (V(I)(l‘))Qdﬂ? — ? ®(z)*dr + i /RS ®(z)* da

RS

Park °75: the ®3 measure y is given by y. = pon &'



Our strategy of proof

Brydges, Frohlich, Sokal '83: Moment bounds for .,
implying p = pon c 2

Our strategy of proof:
1. Consider spatial discretisations with invariant measures g.:

8tq)5 = AE(I)E + Ca(be - (I)g + 55

2. Prove that . — @ in C([O,T],C*%*) if ®.(0) — ®(0) in
c 2

3. Take initial conditions ®.(0) ~ u. and ®(0) ~ .
Conclude from ®.(0) — ®(0) that y is invariant for ®3
equation (argument a la Bourgain '94 for non-linear

Schrédinger equation)

Remark: ®.(0) — ®(0) in S’ is not sufficient.
The result by BFS is important!



Discrete @3 equation

Consider periodic spatial discretisations of ®3 equation
A, (t,7) = <A8<I>5 IR cpi;) (t,2)dt + e~ 3 dW.(t, )

ont € Ry and z € Z2 (dyadic grid), where
» A, is nearest-neighbour discrete Laplacian

As(be(w) = Z ((I)g(y) - (I)e(x))

y~z

» W.(-,x), x € Z3, are independent (up to periodicity)
Brownian motions

Fact: . is an invariant measure for this equation



Convergence of discretised ®3 equations
Theorem (Hairer, M. ’15)

We assume that

> & is the unique maximal solution of ®3 on [0, T™)

> [|®:(0) — ®(0)[lcn — 0 almost surely for some n > —2
Then for every a < —2

> there is a sequence C. ~ ¢~ ! of renormalisation constants

> there is a sequence of stopping times T satisfying lim._,o 7 = T in
probability

such that one has the limit in probability
iig% |®c — @llc; (f0,7.7,co) = O

for some blow-up rate 7at¢t =0

Zhu, Zhu ’15: The convergence result using paracontrolled
distributions
Remarks:

» Need a framework for spatial discretisations of rough SPDEs
» Want to work in spaces C([0,T],C%)



Discrete models

For a regularity structure (7, G) a discrete model (I1¢,I'¢, ¥¢)
consists of

» linear maps 115" : 7 — R% for t € R, z € 74
» maps I, € G fort € Rand z,y € Z¢ such that

et et et _ et et _ 17e,t eV
I, =1 Fx’y Fy; =1 Hy7 = II; Fljy

» maps X5 € G for s,t € R and z € Z¢ such that

et __ e,srye,rt __ \e,st e,stpe,t _ e, sy€E,St
nett =1 mesTyert — 3 SeTel = roeve

For z,y € 74, all test-functions ¢ and locally uniformly in time:

(5 m el SAT, Aele ]

e e L b P (e A R



Relation to original models

We can define models (II,T,X) on R as £ = 0

If (I1, T") is the original model on R**+!, then
» I is equivalent to the pair (I, 2):

L), (s) = Doy Sty = T5T5,

Toy =Teane) T2 = Daea)
» From II to II (formally):

Remark: II!, contains “less information” than f[(t,x)
» From II to II:

(Mg 7) (5,9) = (I5X57) (y)



Discrete modeled distributions

e H®:(0,T] x ZZ — T is a modelled distribution from D77 if

5. (n=m)A0

1H; (@)][m (tve) =, m<y

S
1H () =T Hi W)l S (VD) | —y[
<

xy

|Hf (2) — 25" HE(2) ]| (sVEve) T ([t—s|2ve) "

e The discrete reconstruction map

(REH®),(x) = (5" Hy (x)) (x) , (t,x) € (0,T] x Z¢

Discrete reconstruction theorem
For all (¢,z) € (0,T] x Z¢ and all test functions ¢ one has

n—2

REH®), —ISTHE (z), 00| SNVt VED T, A€ g1
t i t an

Remark: The proof requires a discrete analogue of wavelets



Discrete heat kernel
e The discrete heat kernel on (¢,z) € R x Z:
G5 (2) = e M0 (" 60,.) (2)
where § is Kronecker’s delta

e Replacing d. by a suitable smooth function we write

GfE= K¢ + R°
~— ~—~
localised C>®

e Fore=2"" we expand K¢ as

N-1
K= K° + K5 =K+3) K"
discrete C> n=0

e in such a way that for some ¢ > 0:

o

supp(K*®) C Box(0, ce) IKe(z)] < e d
supp(K*") € Box(0, ¢2 ™) DREE(2)| < 2D



Expansion of the kernel




Abstract integration

LetZ : T — 7T be an abstract integration map, i.e. Z : 7o, — Tot2
Our aim: To define II°Zr, I'°*Z7 and X°Z7 by II¢7, I'*7, ¥°7 and K°®

o We define

(I Z7) (y) = / (523 r, K (y — ))eds — II" (TE,7) (y)
—_———

R
polynomial

e where the polynomial part is given by

Tt = 1 [ (HE5n K (o~ )uds
R

Xk 7 _
+ Y T [ (eSSt DR (3 - ))eds
k' R xT xr L— S
[k|<|T|+2
e Furthermore, we assume

PH(T+T5,) = @+ T8, ST+ T5,) = (T+T5,) 5"



Abstract integration, cont.

e To get the required estimates we write

(T4 Z7) (y) = / (58557, K5 (y — ))eds +(TETT) () + .

=15 Z7)(y)
o (IIS'T7, ). is bounded similarly to continuous case and
(5T, @2)e| S €72 S A2
if [7] 4+ 2 > 0 and A > ¢. Moreover,
(A"~ 1% TIren)e] < (T od)e| + [ T7, 03) |

< elt? g /\‘T|+2_5(|t —s|7 v 6)6

o Somewhat similarly we can build a map K¢ : D7 — D2 st

t
RE (065 ) (o) = [ (RS0 = ))eds



Analysis of discretised SPDEs

Consider spatial discretisations of a locally subcritical equation

8f,us = Aeus + FE(UE7 65) y Us(o) = Ug

Algorithm:

1
2

. Build a regularity structure (7, G) (as in continuous case)

. Remove elements from 7 which do not correspond to functions
in time, e.g. = corresponds to &

. Lift canonically £, to a discrete model Z¢ = (II°,T'¢, X¢)
. Reformulate the equation
U® =K5F.(US,Z) +  polynomial
N—_——
comes from uQ and R®
where U¢ is a modeled distribution and
ue(t,x) = (R°U?), (x)

5. Show that v — u° and Z¢ — Z (after renormalisation)

. Conclude that U — U in D7 (fixed point argument) and u. — u



Conclusions and outlooks

Conclusions:

» The ®2 measure is invariant for the 3 equation
» For almost every (wrt &4 measure) initial condition, the
solution to ®4 equation is almost surely global in time

» The framework can be applied to many rough SPDEs,
incl. KPZ, Burgers, parabolic Anderson etc.

Question:

» What about non-Gaussian and non-stationary noise, e.g.
martingale-driven equations coming from particle
systems?



