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Perturbative Quantum Field Theory (QFT)

Feynman
graphs

@ each Feynman graph represents a Feynman integral (FI) ®(G)

@ truncated sum > ®(G) approximates the process

@ very accurate measurements demand precise theoretical predictions
Challenges: number of graphs & complexity of integrals
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Not the topic of this talk! l
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This talk is about MPL as functions in z, ..., zg4,
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multivalued, i.e. MPL have monodromies.
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This talk is about MPL as functions in z, ..., zg4,

k1 kd
) z]_ ... zd
Llnl,...,nd(217-~-,zd): P |Zi"‘Zd| <1
O<hy<<kg 1 d
for fixed integers n1,...,ng € IN. Analytic continuation in z1,...,z4 is

multivalued, i.e. MPL have monodromies.

Warning

This is very different from the analytic continuation of MZV,

Cnl,...,nd = Linlw-vnd(l’ 000 1)’

in the indices ny, ..., ng, which yields meromorphic functions [talks by
Singer, Ebrahimi-Fard].
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The sum representation for MPL is not useful to understand their analytic
continuation. Instead, we want an integral representation:

|_I1

Liz(Z)

Lin(z

Zi

z dt
—log(l—2z) = / 1
0<k o l—t

zk zd
:Zp:/() TtL.l()

0<k

d
an / tl—'n 1

0<k

Insert these equations into each other (iterated integral):

|_I / dtl/tldtz/t2 /t"2dtn 1/t"1 dt,
n th—1 l_tn
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Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
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tn t
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@ Not all iterated integrals are homotopy invariant.
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iterated integrals (Chen 1973)

Take a manifold X and differential forms wy,...,w, € QY(X). Integrating
these along a path v € C1([0, 1], X), we can construct functions (on 7):

tn t
/wn---m :/ 7 (wn)(tn / / ¥ (wr1)(tr)

O Ifw=dfisexact, [ w=f(y(1)) — f(7(0)) is boring.
@ Not all iterated integrals are homotopy invariant.

(z,9) (z,9)

£

(0,0) (0,0)
= integrability condition (Chen), simplest case:

/w homotopy invariant < dw =0
~



Hyperlogarithms (Poincaré 1884, Lappo-Danilevsky 1927)
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Hyperlogarithms (Poincaré 1884, Lappo-Danilevsky 1927)

Let X = C\ X for a finite set of points . The regular, non-exact forms
dz

wy :=dlog(z — o) =
z—o0

generate homotopy invariant iterated integrals, called hyperlogarithms.

J, wo = log 37(1% J5 w1 = —Li1(2), J5 wowr = —Lia(z)
All MPL can be written this way:
z z
wndilw e wnlilw = —1 d L| (0-2 - 9d )
/0 0 ad 0 o1 ( ) ni,...,Ng 017 ’ 0'd—1’ o4

Notation and some special cases:
® [§ Woy Wy =1(0;01,...,0n2) = G(0op,...,01;2) [Goncharov]
e ¥ ={-1,0,1} harmonic polylogarithms (HPL) [Remiddi & Vermaseren|
e Y ={0,1,1—y,—y} 2-dimensional HPL [Gehrmann & Remiddi



Consider the monoid of all words over ¥,
Y'=1U{w,: 0 €X}U{wnws,: 01,00 € X} U---
where 1 denotes the empty word. Let the tensor algebra
T(Y) =Qws: 0 €X) =ling X"

denote their linear combinations. We extend [, to a linear functional on
T(X), setting [ 1:=1.
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How does [, behave with respect to the Hopf algebra structure of T(X)?

@ shuffle product

@ deconcatenation coproduct
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Shuffle product

The shuffle product of two words
Wn+m"'Wn+1|—|—|Wn"'W1 :ZWJ(n+m)WU(1)
g

is the sum of all their shuffles o, i.e. permutations which preserve the
relative order of letters in both factors:

o)< <o Hn) and o Hn+1)< <o Hn+m).

For arbitrary words v and v, we find that

([9-([)- fi

/w3 : /wzwl = / (wawowr + wowswy + wowiws)
v ¥ ¥

{BB}x{ti<tl={t1 <tb<tlU{ti <tzs3<t}U{ts <t < B}




Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

///"""‘~\\:Z\\\____—'///’—_~‘§=A,fa———-~\\\ZZ~\\-__--:fi:::::>
To decompose
[ = (% m)* (w2 ) (2) (7 5 )" (wa) (81),
Yxn 0<t;1<t,<1
split the interval

{t1§t2}={t1StzS%}U{tlé%ﬁtz}U{%ShStz}
———

waw1
L
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Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

T~ 4 7

To decompose

[ = (5 m)*(wa) (82) (3 5 1) (wa) (1),
y*n 0<t;1 <tr<1

split the interval
(h<tl={ta<nh<utu<li<nlu{i<tu<n}
——— ———

wawi f wow
fw*n 5 2W1
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Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

tl Y t2 "l

To decompose

/ oy = (v % 1)" (wa) (&2) (7 % m)* (wa)(12),

y*n 0<t;1 <tr<1

split the interval
(h<tl={a<b<iu{u<i<nlu{i<un<t}
————
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fv*n 721 77271
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Path concatenation

Let %7 denote the concatenation of v and 7 at (1) = n(0) = (y*n)(2):

Y N\

to

To decompose

/ W1 :/WQW1+/L02/W1+/6020J1,
v*N ol n Y n

split the interval
(h<tl={t<b<u{un<i<nlu{i<u<t}
——

f W1 f wow f wgf w1 f wow1
*N el 21 n ol n

More generally, the path concatenation formula reads

n
/ wn---wl=Z/wn---wk+1/wk---w1.
N k—=0""N v
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How does fv behave with respect to the Hopf algebra structure of T(X)?

o shuffle product: [ is a character

([4)-([)= Lo

@ deconcatenation coproduct: A: T(X) — T(X)® T(X)

n
/ wn---wl=Z/wn---wk+1/wk---w1
Y*n k=0"" vy

n
Awn...wl:an...wk+l®wk...wl
k=0
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How does fv behave with respect to the Hopf algebra structure of T(X)?

o shuffle product: [ is a character

([4)-([)= Lo

o deconcatenation coproduct: [ ., = [ * [ = m([, @ [)A
n
e n v

k=0

n
Awn...wl:an...wk+l®wk...wl
k=0
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Inverses of characters can be computed with the antipode:

v l=9oS§ (such that Y x 9~ = ¢)

where S(wi- - wp) = (—wp) -+ (—w1).

If 7 = ~(0) is homotopic to a constant path, then [ =e. Hence

Lol (L)L s

for the inverse path v ~1(t) = v(1 — t).
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Inverses of characters can be computed with the antipode:

v l=9oS§ (such that Y x 9~ = ¢)

where S(wi- - wp) = (—wp) -+ (—w1).

If 7 = ~(0) is homotopic to a constant path, then [ =e. Hence

Lol (L)L s

for the inverse path v ~1(t) = v(1 — t).

Changing base points

z z b b z z
[=[efswe [=[5]
a b a a b a

is mediated by (right-) convolution with a constant character fab.
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Singularities

Singularities when {7(0),v(1)} > z = 7 € {o0} UX are logarithmic: There
exist (uniquely determined) functions fi ,,(z), analytic at z = 7, such that

/7 w = Z logh(z — 7)fiw(z) (finite sum)

k>0
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Singularities when {7(0),v(1)} > z = 7 € {o0} UX are logarithmic: There
exist (uniquely determined) functions fi ,,(z), analytic at z = 7, such that

/7 w = Z logh(z — 7)fiw(z) (finite sum)

k>0

Definition (logarithmic regularization)

The regularized limit is Reg,_,, [ w = fow (7).

V4 z V4 V4
/ wo = log — / wo = Reg/ wo = log(z)
b b 0 b—0.b
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Shuffle regularization

If the last letter of w is not wq, then foz w converges:

Reg W—|Im/W—/
b—0 b—0
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b—0 b—0
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Definition (shuffle regularization)

regg (Z Wi LLIwS) = wWp

k>0

defines a character and projection onto words not ending in wy.

One can show that, for w = uw,wg with o # 0,
0

Wy = [u LLI (—wg)”_k} we = reg (uwgwg*k)
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Definition (shuffle regularization)

regg (Z Wi LLIwS) = wWp

k>0

defines a character and projection onto words not ending in wy.

One can show that, for w = uw,wg with o # 0,
0

Wy = [u LLI (—wg)”_k} we = reg (uwgw(’)’*k)

Let P,: T(X) — T({o}) denote the projection onto powers of w,, then
id = reggxPo (rego = id x Py 1)

Similarly, we can write w = 37~ wi LU w} such that wy does not begin
with 1 and set reg(w) := wy.

Definition (Shuffle-regularized MZV)
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Remember

Even though ~ is suppressed in the notation and [; w, these functions still
depend on the homotopy class of ~.
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Remember

Even though ~ is suppressed in the notation and [; w, these functions still
depend on the homotopy class of ~.

z z z 1
/ = / regl*/ Pl*/ reg!
0 1 0 0

How does Lis(z) = — [5 wow:i behave near 17

Lia(2) = L|2(1)—/ wo/ w1+/ wiwo

= (, — log(z) log(1 — z) — Liz(1 — 2)

Analytic continuation by encircling 1 contributes +27ilog(z).

Note: This only adds lower weight functions.
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