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Atiyah-Singer Index Theorem
• M Riemannian manifold, compact, without boundary
• spin structure⇝ spinor bundle SM → M
• n = dim(M) even⇝ splitting SM = SRM ⊕ SLM
• Hermitian vector bundle E → M with connection⇝

twisted Dirac operator D : C∞(M,VR) → C∞(M,VL) where
VR/L = SR/LM ⊗ E

Theorem (M. Atiyah, I. Singer, 1968)

The operator D is Fredholm and

ind(D) =

∫
M

Â(M)∧ch(E)
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Boundary Conditions

Now let M have nonempty boundary.
Need boundary conditions:
Choose “Fermi coordinate function” t : M → R and write

D = γ

(
∂

∂t
+ At

)
A0 is a selfadjoint Dirac-type operator on ∂M.
P+ = χ[0,∞)(A0) = spectral projector

APS-boundary conditions:

P+(f |∂M) = 0
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Atiyah-Patodi-Singer index theorem
Theorem (M. Atiyah, V. Patodi, I. Singer, 1975)

Under APS-boundary conditions D is
Fredholm and

ind(DAPS) =

∫
M

Â(M) ∧ ch(E)

+

∫
∂M

T (Â(M) ∧ ch(E))−h(A0) + η(A0)

2

Here
• h(A) = dim ker(A)
• η(A) = ηA(0) where ηA(s) =

∑
λ∈spec(A)

λ̸=0

sign(λ) · |λ|−s
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Spectral flow

Special case M = Σ× [0,1] and g = dt2 + gt
Then D = γ

(
∂
∂t + At

)
holds globally and

sf(At∈[0,1]) = ind(DAPS) + h(A1)

t = 0 t = 1
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Warning
APS-boundary conditions cannot be replaced by
anti-Atiyah-Patodi-Singer boundary conditions,

P−(f |∂M) = χ(−∞,0)(A0)(f |∂M) = 0

Example

• M = unit disk ⊂ C
• D = ∂ = ∂

∂z

• Fourier expansion: u|∂M =
∑

n∈Z αneinθ

• A0 = i d
dθ

• Taylor expansion: u =
∑∞

n=0 αnzn

APS-boundary conditions:
αn = 0 for n ≥ 0 ⇒ ker(D) = {0}
aAPS-boundary conditions:
αn = 0 for n < 0 ⇒ ker(D) = infinite dimensional
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Lorentzian manifolds

Replace “spaces” by “spacetimes”,
i.e. Riemannian manifolds by Lorentzian manifolds.

Dirac operator no longer elliptic, but hyperbolic.
In particular, no elliptic regularity theory
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Compactness?

Problem 1: Compact Lorentzian manifolds (without boundary)
violate causality conditions
⇒ useless as models in General Relativity

Problem 2: hyperbolic PDE theory does not work on such
spacetimes
⇒ no Lorentzian analog to Atiyah-Singer index theorem
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Globally hyperbolic spacetimes

A subset Σ ⊂ M is called Cauchy hypersurface if each
inextensible timelike curve in M meets Σ precisely once.

If M has a Cauchy hypersurface then M is called globally
hyperbolic.

Examples:

• Minkowski spacetime (Special Relativity)
• Schwarzschild Model (Black Hole)
• Friedmann cosmos (Big Bang, cosmic expansion)
• deSitter spacetime
• · · ·
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The Lorentzian index theorem
Let M be a compact globally hyperbolic Lorentzian manifold
with boundary ∂M = Σ0 ⊔ Σ1
Σj smooth spacelike Cauchy hypersurfaces
D twisted Dirac operator

M
Σ0

Σ1
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The Lorentzian index theorem
Theorem (C. B., A. Strohmaier, 2015)
Under APS-boundary conditions D is a Fredholm op-
erator. The kernel consists of smooth spinor fields and

ind(DAPS) =

∫
M

Â(M) ∧ ch(E) +

∫
∂M

T (Â(M) ∧ ch(E))

−h(A0) + h(A1) + η(A0)− η(A1)

2

Moreover,

ind(DAPS) = dim ker[D : C∞
APS(M;VR) → C∞(M;VL)]

− dim ker[D : C∞
aAPS(M;VR) → C∞(M;VL)]

aAPS conditions are as good as APS-boundary conditions
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Proof of the regularity statement

• If Φ is a distributional spinor solving DΦ = 0 then
WF(Φ) ⊂ {lightlike covectors}

• Φ restricts to distributions along Σ0/1

• APS conditions along Σ0 ⇒
WF(Φ) ⊂ {future-directed lightlike covectors} along Σ0

• propagation of singularities ⇒
WF(Φ) ⊂ {future-directed lightlike covectors} on all of M

• similarly, APS along Σ1 ⇒
WF(Φ) ⊂ {past-directed lightlike covectors}

• ⇒ WF(Φ) = ∅, i.e. Φ is smooth
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Application to physics: the chiral anomaly in QFT

No natural physical interpretation of APS boundary conditions
in the Riemannian case.
But the Lorentzian version allows to compute the chiral
anomaly in QFT.
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