An index theorem for compact Lorentzian manifolds with boundary

Christian Bär (joint w. Alexander Strohmaier)

Institut für Mathematik Universität Potsdam

Paths to, from and in renormalization Potsdam, *February 8, 2016*

Atiyah(-Patodi)-Singer Index Theorem

Lorentzian manifolds

Atiyah-Singer Index Theorem

- M Riemannian manifold, compact, without boundary
- spin structure \rightsquigarrow spinor bundle $SM \rightarrow M$
- $n = \dim(M)$ even \rightsquigarrow splitting $SM = S_R M \oplus S_L M$
- Hermitian vector bundle *E* → *M* with connection ~→ twisted Dirac operator *D* : *C*[∞](*M*, *V_R*) → *C*[∞](*M*, *V_L*) where *V_{R/L}* = *S_{R/L}M* ⊗ *E*

Theorem (M. Atiyah, I. Singer, 1968)

The operator **D** is Fredholm and

$$\operatorname{ind}(D) = \int_M \widehat{\mathsf{A}}(M) \wedge \operatorname{ch}(E)$$

Boundary Conditions

Now let *M* have nonempty boundary.

Need boundary conditions:

Choose "Fermi coordinate function" $t: M \to \mathbb{R}$ and write

$$\boldsymbol{D} = \gamma \left(\frac{\partial}{\partial t} + \boldsymbol{A}_t \right)$$

 A_0 is a selfadjoint Dirac-type operator on ∂M . $P_+ = \chi_{[0,\infty)}(A_0) =$ spectral projector

APS-boundary conditions:

 $P_+(f|_{\partial M})=0$

Atiyah-Patodi-Singer index theorem

Theorem (M. Atiyah, V. Patodi, I. Singer, 1975)

Under APS-boundary conditions *D* is Fredholm and

$$\operatorname{ind}(D_{APS}) = \int_{M} \widehat{A}(M) \wedge \operatorname{ch}(E) + \int_{\partial M} T(\widehat{A}(M) \wedge \operatorname{ch}(E)) - \frac{h(A_{0}) + \eta(A_{0})}{2}$$

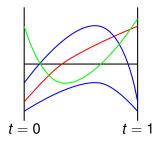
Here

- $h(A) = \dim \ker(A)$
- $\eta(A) = \eta_A(0)$ where $\eta_A(s) = \sum_{\substack{\lambda \in \text{spec}(A) \\ \lambda \neq 0}} \operatorname{sign}(\lambda) \cdot |\lambda|^{-s}$

Spectral flow

Special case $M = \Sigma \times [0, 1]$ and $g = dt^2 + g_t$ Then $D = \gamma \left(\frac{\partial}{\partial t} + A_t\right)$ holds globally and

 $\mathsf{sf}(A_{t\in[0,1]}) = \mathsf{ind}(D_{\mathsf{APS}}) + h(A_1)$



Warning

APS-boundary conditions cannot be replaced by anti-Atiyah-Patodi-Singer boundary conditions,

 $P_{-}(f|_{\partial M}) = \chi_{(-\infty,0)}(A_0)(f|_{\partial M}) = 0$

Example

- M = unit disk $\subset \mathbb{C}$
- $D = \overline{\partial} = \frac{\partial}{\partial \overline{z}}$
- Fourier expansion: $u|_{\partial M} = \sum_{n \in \mathbb{Z}} \alpha_n e^{in\theta}$
- $A_0 = i \frac{d}{d\theta}$
- Taylor expansion: $u = \sum_{n=0}^{\infty} \alpha_n z^n$

APS-boundary conditions:

 $\alpha_n = 0 \text{ for } n \ge 0 \Rightarrow \ker(D) = \{0\}$

aAPS-boundary conditions:

 $\alpha_n = 0$ for $n < 0 \Rightarrow ker(D) = infinite dimensional$

Lorentzian manifolds

Replace "spaces" by "spacetimes", i.e. Riemannian manifolds by Lorentzian manifolds.

Dirac operator no longer elliptic, but hyperbolic. In particular, no elliptic regularity theory

Problem 1: Compact Lorentzian manifolds (without boundary) violate causality conditions ⇒ useless as models in General Relativity

Problem 2: hyperbolic PDE theory does not work on such spacetimes

 \Rightarrow no Lorentzian analog to Atiyah-Singer index theorem

Globally hyperbolic spacetimes

A subset $\Sigma \subset M$ is called Cauchy hypersurface if each inextensible timelike curve in M meets Σ precisely once.

If M has a Cauchy hypersurface then M is called globally hyperbolic.

Examples:

- Minkowski spacetime (Special Relativity)
- Schwarzschild Model (Black Hole)
- Friedmann cosmos (Big Bang, cosmic expansion)
- deSitter spacetime

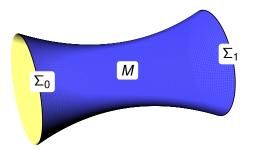
• • • •

The Lorentzian index theorem

Let *M* be a compact globally hyperbolic Lorentzian manifold with boundary $\partial M = \Sigma_0 \sqcup \Sigma_1$

 Σ_i smooth spacelike Cauchy hypersurfaces

D twisted Dirac operator



The Lorentzian index theorem

Theorem (C. B., A. Strohmaier, 2015)

Under APS-boundary conditions D is a Fredholm operator. The kernel consists of smooth spinor fields and

$$\operatorname{ind}(D_{APS}) = \int_{M} \widehat{A}(M) \wedge \operatorname{ch}(E) + \int_{\partial M} T(\widehat{A}(M) \wedge \operatorname{ch}(E)) \\ - \frac{h(A_{0}) + h(A_{1}) + \eta(A_{0}) - \eta(A_{1})}{2}$$

Moreover,

$$\begin{split} \mathsf{ind}(D_{\mathsf{APS}}) = \dim \mathsf{ker}[D: C^\infty_{\mathsf{APS}}(M; V_R) \to C^\infty(M; V_L)] \\ - \dim \mathsf{ker}[D: C^\infty_{\mathsf{aAPS}}(M; V_R) \to C^\infty(M; V_L)] \end{split}$$

aAPS conditions are as good as APS-boundary conditions

Proof of the regularity statement

- If Φ is a distributional spinor solving DΦ = 0 then WF(Φ) ⊂ {lightlike covectors}
- Φ restricts to distributions along Σ_{0/1}
- APS conditions along $\Sigma_0 \Rightarrow$ WF(Φ) \subset {future-directed lightlike covectors} along Σ_0
- propagation of singularities ⇒
 WF(Φ) ⊂ {future-directed lightlike covectors} on all of M
- similarly, APS along Σ₁ ⇒
 WF(Φ) ⊂ {past-directed lightlike covectors}
- \Rightarrow WF(Φ) = \emptyset , i.e. Φ is smooth

Application to physics: the chiral anomaly in QFT

No natural physical interpretation of APS boundary conditions in the Riemannian case. But the Lorentzian version allows to compute the chiral

anomaly in QFT.

References:

C. Bär and A. Strohmaier: An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary arXiv:1506.00959

C. Bär and A. Strohmaier: A rigorous geometric derivation of the chiral anomaly in curved backgrounds arXiv:1508.05345

Thanks for your attention!

