## MULTIPLICATION OF DISTRIBUTIONS

## Christian Brouder

Institut de Minéralogie, de Physique des
Matériaux et de Cosmochimie UPMC, Paris

## QUANTUM FIELD THEORY

- Feynman diagram

- Feynman amplitude
$G\left(x_{1}, x_{2}\right) \Delta\left(x_{2}, x_{3}\right)^{2} G\left(x_{3}, x_{4}\right) \Delta\left(x_{1}, x_{4}\right) \Delta\left(x_{4}, x_{5}\right) \Delta\left(x_{5}, x_{6}\right) \Delta\left(x_{6}, x_{7}\right) G\left(x_{5}, x_{7}\right)$


## QUANTUM FIELD THEORY

- Feynman diagram

- Feynman amplitude
$G\left(x_{1}, x_{2}\right) \Delta\left(x_{2}, x_{3}\right)^{2} G\left(x_{3}, x_{4}\right) \Delta\left(x_{1}, x_{4}\right) \Delta\left(x_{4}, x_{5}\right) \Delta\left(x_{5}, x_{6}\right) \Delta\left(x_{6}, x_{7}\right) G\left(x_{5}, x_{7}\right)$


## QUANTUM FIELD THEORY

- Feynman diagram

- Feynman amplitude

$$
\underline{G\left(x_{1}, x_{2}\right) \Delta\left(x_{2}, x_{3}\right)^{2} G\left(x_{3}, x_{4}\right) \Delta\left(x_{1}, x_{4}\right) \Delta\left(x_{4}, x_{5}\right) \Delta\left(x_{5}, x_{6}\right) \Delta\left(x_{6}, x_{7}\right) G\left(x_{5}, x_{7}\right)}
$$

## QUANTUM FIELD THEORY

- Feynman diagram

- Feynman amplitude

$$
G\left(x_{1}, x_{2}\right) \Delta\left(x_{2}, x_{3}\right)^{2} G\left(x_{3}, x_{4}\right) \Delta\left(x_{1}, x_{4}\right) \Delta\left(x_{4}, x_{5}\right) \Delta\left(x_{5}, x_{6}\right) \Delta\left(x_{6}, x_{7}\right) G\left(x_{5}, x_{7}\right)
$$

## QUANTUM FIELD THEORY

- Feynman diagram

- Feynman amplitude

$$
G\left(x_{1}, x_{2}\right) \Delta\left(x_{2}, x_{3}\right)^{2} G\left(x_{3}, x_{4}\right) \Delta\left(x_{1}, x_{4}\right) \Delta\left(x_{4}, x_{5}\right) \Delta\left(x_{5}, x_{6}\right) \Delta\left(x_{6}, x_{7}\right) G\left(x_{5}, x_{7}\right)
$$

- Multiply distributions on the largest domain where this is well defined $\mathcal{D}\left(\mathbb{R}^{7 d} \backslash\left\{x_{i}=x_{j}\right\}\right)$
- Renormalization: extend the result to $\mathcal{D}\left(\mathbb{R}^{7 d}\right)$


## ALGEBRAIC QUANTUM FIELD THEORY

- Multiplication of distributions
- Motivation
- The wave front set of a distribution
- Application and topology
- Extension of distributions (Viet)
- Renormalization as the solution of a functional equation
- The scaling of a distribution
- Extension theorem
- Renormalization on curved spacetimes (Kasia)
- Epstein-Glaser renormalization
- Algebraic structures (Batalin-Vilkovisky, Hopf algebra)
- Functional analytic aspects
- Joint work with Yoann Dabrowski, Nguyen Viet Dang and Frédéric Hélein



## OUTLINE

- Trying to multiply distributions
- Singular support
- Fourier transfom
- The wave front set
- Examples
- Characteristic functions
- Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology


## MULTIPLY DISTRIBUTIONS

- Heaviside step function

$$
\begin{aligned}
& \theta(x)=0 \text { for } x<0, \\
& \theta(x)=1 \text { for } x \geq 0 .
\end{aligned}
$$

- As a function $\theta^{n}=\theta$
- Heaviside distribution

$$
\langle\theta, f\rangle=\int_{-\infty}^{\infty} \theta(x) f(x) d x=\int_{0}^{\infty} f(x) d x
$$

- If $\theta^{n}=\theta$ then $n \theta^{n-1} \delta=\delta$ and $n \theta \delta=\delta$ for $n \geqslant 2$


## REGULARIZATION

Mollifier $\varphi$ such that $\int \varphi(x) d x=1$

- Distributions are molilified by
convolution with $\delta_{\epsilon}(x)=\frac{1}{\epsilon^{d}} \varphi\left(\frac{x}{\epsilon}\right)$
- Mollified Heaviside distribution

$$
\theta_{\epsilon}(x)=\int_{-\infty}^{x} \delta_{\epsilon}(y) d y
$$

$$
\theta \delta=\lim _{\epsilon \rightarrow 0} \theta_{\epsilon} \delta_{\epsilon}=\frac{1}{2} \delta
$$

- But $\delta^{2}=\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}^{2}$ diverges
- Very heavy calculations (Colombeau generalized functions)


## SINGULAR SUPPORT

- How detect a singular point in a distribution $u$ ?

- Multiply by a smooth function $g \in \mathcal{D}(M)$ around $x \in M$

- Look whether $g u$ is smooth or not


## SINGULAR SUPPORT

- Let $u$ be a distribution on $M=\mathbb{R}^{d}$ and $g \in \mathcal{D}(M)$ such that $g u$ is a smooth function. For $e_{\xi}(x)=e^{i \xi \cdot x}$

$$
g(x) u(x)=\left\langle g u, \delta_{x}\right\rangle=\int \frac{d \xi}{(2 \pi)^{d}}\left\langle g u, e_{\xi}\right\rangle e^{-i \xi \cdot x}
$$

- All the derivatives of $g u$ exist:

$$
\forall N, \exists C_{N}, \text { s.t. } \forall \xi, \quad\left|\left\langle g u, e_{\xi}\right\rangle\right| \leqslant C_{N}(1+|\xi|)^{-N}
$$

- The singular support of $u$ is the complement of the set of points $x \in M$ such that there is a $g \in \mathcal{D}(M)$ with $g u$ a smooth function and $g(x) \neq 0$


## EASY PRODUCTS

- You can multiply a distribution $u$ and a smooth function $f$

$$
\langle f u, g\rangle=\langle u, f g\rangle
$$

- You can multiply two distributions $u$ and $v$ with disjoint singular supports

$$
\langle u v, g\rangle=\langle u, v f g\rangle+\langle v, u(1-f) g\rangle
$$

where

- $f=0$ on a neighborhood of the singular support of $v$
- $f=1$ on a neighborhood of the singular support of $u$


## HARD PRODUCTS

- Product of distributions with common singular support
- Consider

$$
u_{+}(x)=\frac{1}{x-i 0^{+}}=i \int_{0}^{\infty} e^{-i k \xi} d \xi
$$

- More precisely

$$
\left\langle u_{+}, g\right\rangle=i \int_{0}^{\infty} \hat{g}(-\xi) d \xi
$$

- Its singular support is $\Sigma\left(u_{+}\right)=\{0\}$


## HARD PRODUCTS

- Product of distributions with common singular support
- Consider also

$$
u_{-}(x)=\frac{1}{x+i 0^{+}}=-i \int_{0}^{\infty} e^{i k \xi} d \xi
$$

- More precisely

$$
\left\langle u_{-}, g\right\rangle=-i \int_{0}^{\infty} \hat{g}(\xi) d \xi
$$

- Its singular support is $\Sigma\left(u_{-}\right)=\{0\}$


## FOURIER TRANSFORM

- Convolution theorem $\widehat{u v}=\widehat{u} \star \widehat{v}$
- Define the product by $u v=\mathcal{F}^{-1}(\widehat{u} \star \widehat{v})$
- Example

$$
u_{+}(x)=\frac{1}{x-i 0^{+}} \quad \widehat{u_{+}}(\xi)=2 i \pi \theta(\xi)
$$

- Square of $u_{+}$

$$
\widehat{u_{+}^{2}}(\xi)=-2 \pi \int_{\mathbb{R}} \theta(\eta) \theta(\xi-\eta) d \eta=-2 \pi \xi \theta(\xi)
$$

## FOURIER TRANSFORM

- Example

$$
\begin{aligned}
& u_{+}(x)=\frac{1}{x-i 0^{+}} \quad \widehat{u_{+}}(\xi)=2 i \pi \theta(\xi) \\
& u_{-}(x)=\frac{1}{x+i 0^{+}} \quad \widehat{u_{-}}(\xi)=-2 i \pi \theta(-\xi)
\end{aligned}
$$

- Product $u_{+} u_{-}$



## FOURIER TRANSFORM

- Interpretation

$$
\widehat{u_{+}}(\eta)
$$



$$
\widehat{u_{+}}(\xi-\eta)
$$



$$
\widehat{u_{-}}(\xi-\eta)
$$



- $\widehat{u}(\eta)$ can be integrable in some direction
- The non-integrable directions of $\widehat{u}(\eta)$ can be compensated for by the integrable directions of $\widehat{v}(\xi-\eta)$


## FOURIER TRANSFORM

- Interpretation

$$
\widehat{u_{+}}(\eta)
$$



$$
\widehat{u_{+}}(\xi-\eta)
$$


$\widehat{u_{+}}(\eta) \widehat{u_{+}}(\xi-\eta)$


- Integrable: $u_{+}^{2}$ is well-defined


## FOURIER TRANSFORM

- Interpretation

$$
\widehat{u_{+}}(\eta)
$$



$$
\widehat{u_{-}}(\xi-\eta)
$$


$\widehat{u_{+}}(\eta) \widehat{u_{-}}(\xi-\eta)$


- Not integrable : $u_{+} u_{-}$is not well-defined


## FOURIER TRANSFORM

- Define the product by $u v=\mathcal{F}^{-1}(\widehat{u} \star \widehat{v})$
- What if the distributions have no Fourier transform?
- The product of distributions is local: $w=u v$ near $x$ if

$$
\widehat{f^{2} w}=\widehat{f u} \star \widehat{f v} \text { for } f=1 \text { in a neighborhood of } x
$$

- How should the integral converge?

$$
\widehat{f^{2} u v}(\xi)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \widehat{f u}(\eta) \widehat{f v}(\xi-\eta) d \eta
$$

- Absolute convergence is not enough if we want the Leibniz rule to hold


## FOURIER TRANSFORM

- How can the integral converge?

$$
\widehat{f^{2} u v}(\xi)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \widehat{f u}(\eta) \widehat{f v}(\xi-\eta) d \eta
$$

- The order of $f u$ is finite: $|\widehat{f u}(\eta)| \leq C(1+|\eta|)^{m}$
- If $\widehat{f u}(\eta)$ does not decrease along direction $\eta$, then $\widehat{f v}(\xi-\eta)$ must decrease faster than any inverse polynomial
- Conversely, $\widehat{f u}(\eta)$ must compensate for the directions along which $\widehat{f v}(\xi-\eta)$ does not decrease fast


## OUTLINE

## Trying to multiply distributions

- Singular support
- Fourier transfom
- The wave front set
- Examples
- Characteristic functions
- Hörmander's theorem for distribution products
- Examples in quantum field theory Topology


## THE WAVE FRONT SET



Mikio Sato 1928-


Lars Valter Hörmander 1931-2012

## WAVE FRONT SET

- A point $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{d}$ does not belong to the wave front set of a distribution $u$ if there is a test function $f$ with $f\left(x_{0}\right) \neq 0$ and a conical neighborhood $V \subset \mathbb{R}^{d}$ of $\xi_{0}$ such that, for every integer $N$ there is a constant $C_{N}$ for which

$$
|\widehat{f u}(\xi)| \leq C_{N}(1+|\xi|)^{-N}
$$

for every $\xi \in V$

## WAVE FRONT SET

- The wave front set is a cone: if $(x, \xi) \in \mathrm{WF}(u)$, then $(x, \lambda \xi) \in \mathrm{WF}(u)$ for every $\lambda>0$
- The wave front set is closed
- $\mathrm{WF}(u+v) \subset \mathrm{WF}(u) \cup \mathrm{WF}(v)$
- The singular support of $u$ is the projection of $\operatorname{WF}(u)$ on the first variable


## EXAMPLES

- The wavefront set describes in which direction the distribution is singular above each point of the singular support
- The Dirac $\delta$ function is singular at $x=0$ and its Fourier transform is $\widehat{\delta}(\xi)=1$
- Its wave front set is $\mathrm{WF}(\delta)=\{(0, \xi) ; \xi \neq 0\}$
- The distribution $u_{+}(x)=\left(x-i 0^{+}\right)^{-1}$ is also singular at $x=0$ but its Fourier transform is $\widehat{u_{+}}(\xi)=2 i \pi \theta(\xi)$
- Its wave front set is $\operatorname{WF}\left(u_{+}\right)=\{(0, \xi) ; \xi>0\}$


## CHARACTERISTIC FUNCTION



- Relation to the Radon transform



## CHARACTERISTIC FUNCTION

- Characteristic function of a disk: the wave front set is perpendicular to the edge

- The wave front set is used in edge detection for machine vision and image processing


## CHARACTERISTIC FUNCTION

- Shape and wave front set detection by counting intersections



## DISTRIBUTION PRODUCT

- Product of distributions

$$
\widehat{f^{2} u v}(\xi)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \widehat{f u}(\eta) \widehat{f v}(\xi-\eta) d \eta
$$

- Hörmander thm: The product of two distributions $u$ and $v$ is well defined if there is not point $(x, \xi) \in \mathrm{WF}(u)$ such that $(x,-\xi) \in \mathrm{WF}(v)$
- The wave front set of the product is

$$
\mathrm{WF}(u v) \subset \mathrm{WF}(u) \oplus \mathrm{WF}(v) \cup \mathrm{WF}(u) \cup \mathrm{WF}(v)
$$

$$
\mathrm{WF}(u) \oplus \mathrm{WF}(v)=\{(x, \xi+\eta) ;(x, \xi) \in \mathrm{WF}(u) \text { and }(x, \eta) \in \mathrm{WF}(v)\}
$$

## OUTLINE

- Trying to multiply distributions
- Singular support
- Fourier transfom


## The wave front set

- Examples
- Characteristic functions
- Hörmander's theorem for distribution products
- Examples in quantum field theory Topology


## QFT: THE CAUSAL APPROACH



Stueckelberg


Bogoliubov


Radzikowski

Klaus Fredenhagen


Stefan Hollands


Robert Wald


Kasia Rejzner


## PROPAGATOR

- Product of fields

$$
\Delta_{+}(x)=\langle 0| \varphi(x) \varphi(0)|0\rangle
$$

- Singular support

$$
\left\{(x, y, t) ; t^{2}-x^{2}-y^{2}=0\right\}
$$

Wavefront set

- Powers $\Delta_{+}^{n}$ are allowed
- Quantization does not need renormalization
Wightman propagator


## PROPAGATOR

- Time-ordered product of fields
$\Delta_{F}(x)=\langle 0| T(\varphi(x) \varphi(0))|0\rangle$
- Singular support

$$
\left\{(x, y, t) ; t^{2}-x^{2}-y^{2}=0\right\}
$$

Wavefront set

- Powers $\Delta_{F}^{n}$ are allowed away from $x=0$
- Powers $\Delta_{F}^{n}$ are forbidden at $x=0$

Feynman propagator

- Renormalize only at $x=0$


## WAVE FRONT SET

- Let $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ be open sets and $f: U \rightarrow V$ a smooth map.
- The pull-back of a distribution $v \in \mathcal{D}^{\prime}(V)$ by $f$ is determined by the wave front set
- The dual space of a distribution is determined by its wave front set
- The restriction of a distribution to a submanifold is determined by the wave front set
- The propagation of singularities is described by the wave front set


## EXAMPLES

- The true propagator is $G(x, y)=\Delta_{F}(x-y)$
- By pull-back by $f(x, y)=x-y$, its wave front set is

$$
\mathrm{WF}(G)=\left\{((x, y),(\xi,-\xi)) ;(x-y, \xi) \in \mathrm{WF}\left(\Delta_{F}\right)\right\}
$$

- In curved space time, the wave front set of the propagator is obtained by pull-back:
- either $((x, x),(\xi,-\xi))$ for arbitrary $\xi \neq 0$
- or $((x, y),(\xi,-\eta))$ such that there is a null geodesic between $x$ and $y$, and $\eta$ is obtained by parallel transporting $\xi$ along the geodesic


## QUANTUM FIELD THEORY

- Feynman diagram
- Feynman amplitude


$$
G\left(x_{1}, x_{2}\right) \Delta\left(x_{2}, x_{3}\right)^{2} G\left(x_{3}, x_{4}\right) \Delta\left(x_{1}, x_{4}\right) \Delta\left(x_{4}, x_{5}\right) \Delta\left(x_{5}, x_{6}\right) \Delta\left(x_{6}, x_{7}\right) G\left(x_{5}, x_{7}\right)
$$

- The amplitude is well defined, except on the diagonals
- It remains to renormalize to define the product on the diagonals
- The wave front set of the renormalized amplitude can be estimated


## OUTLINE

- Trying to multiply distributions
- Singular support
- Fourier transfom
- The wave front set
- Examples
- Characteristic functions
- Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology


## TOPOLOGY

- For a closed cone $\Gamma \subset T^{*} M$ we define

$$
\mathcal{D}_{\Gamma}^{\prime}(U)=\left\{u \in \mathcal{D}^{\prime}(U) ; \operatorname{WF}(u) \subset \Gamma\right\}
$$

- We furnish $\mathcal{D}_{\Gamma}^{\prime}(U)$ with a locally convex topology
- Let $E$ be a vector space over $\mathbb{C}$. A semi-norm on $E$ is a map $p: E \rightarrow \mathbb{R}$ such that
- $p(\lambda x)=|\lambda| p(x)$ for all $\lambda \in \mathbb{C}$ and $x \in E$
- $p(x+y) \leq p(x)+p(y)$ for all $x, y \in E$
- A locally convex space is a vector space $E$ equipped with a family $\left(p_{i}\right)_{i \in I}$ of semi-norms on $E$
- The sets $V_{i, \epsilon}=\left\{x \in E ; p_{i}(x)<\epsilon\right\}$ form a sub-base of the topology generated by the semi-norms


## TOPOLOGY

- The seminorms of $\mathcal{D}_{\Gamma}^{\prime}(U)$ are:
- $p_{B}(u)=\sup _{f \in B}|\langle u, f\rangle|$ where $B$ is bounded in $\mathcal{D}(U)$ are the seminorms of the strong topology of $\mathcal{D}^{\prime}(U)$
- $\|u\|_{N, V, \chi}=\sup _{k \in V}(1+|k|)^{N}|\widehat{u \chi}(k)|$ for all integers $N$, closed cones $V$ and functions $\chi \in \mathcal{D}(U)$ s.t. $\operatorname{supp} \chi \times V \cap \Gamma=\emptyset$
- The second set of seminorms is used to ensure that the Fourier transform of $u \in \mathcal{D}_{\Gamma}^{\prime}(U)$ around $x \in \operatorname{supp}(\chi)$ decreases faster than any inverse polynomial: the wave front set of $u \in \mathcal{D}_{\Gamma}^{\prime}(U)$ is in $\Gamma$


## TOPOLOGY

Thm. (CB, Y. Dabrowski)

- $\mathcal{D}_{\Gamma}^{\prime}(U)$ is complete
- $\mathcal{D}_{\Gamma}^{\prime}(U)$ is semi-Montel (its closed and bounded subsets are compact)
- $\mathcal{D}_{\Gamma}^{\prime}(U)$ is semi-reflexive
- $\mathcal{D}_{\Gamma}^{\prime}(U)$ is nuclear
- $\mathcal{D}_{\Gamma}^{\prime}(U)$ is a normal space of distributions


## TOPOLOGY

Thm. (CB, N. V. Dang, F. Hélein)
With the topology of $\mathcal{D}_{\Gamma}^{\prime}(U)$

- The pull-back is continuous
- The push-forward is continuous
- The multiplication of distributions is hypocontinuous
- The tensor product of distributions is hypocontinuous
- The duality pairing is hypocontinuous

FOR YOUR ATTENTION


