MULTIPLICATION OF DISTRIBUTIONS

Christian Brouder Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie UPMC, Paris

Feynman diagram

Feynman amplitude

- Multiply distributions on the largest domain where this is well defined $\mathcal{D}(\mathbb{R}^{7d} \setminus \{x_i = x_j\})$
- Renormalization: extend the result to $\mathcal{D}(\mathbb{R}^{7d})$

ALGEBRAIC QUANTUM FIELD THEORY

Multiplication of distributions

- Motivation
- The wave front set of a distribution
- Application and topology
- Extension of distributions (Viet)
 - Renormalization as the solution of a functional equation
 - The scaling of a distribution
 - Extension theorem

- Renormalization on curved spacetimes (Kasia)
 - Epstein-Glaser renormalization
 - Algebraic structures (Batalin-Vilkovisky, Hopf algebra)
 - Functional analytic aspects

Joint work with Yoann Dabrowski, Nguyen Viet Dang and Frédéric Hélein

OUTLINE

Trying to multiply distributions

- Singular support
- Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory
- Topology

MULTIPLY DISTRIBUTIONS

0

• Heaviside step function $\theta(x) = 0 \text{ for } x < 0,$ $\theta(x) = 1 \text{ for } x \ge 0.$

- As a function $\theta^n = \theta$
 - Heaviside distribution

 $\langle \theta, f \rangle = \int_{-\infty}^{\infty} \theta(x) f(x) dx = \int_{0}^{\infty} f(x) dx$

• If $\theta^n = \theta$ then $n\theta^{n-1}\delta = \delta$ and $n\theta\delta = \delta$ for $n \ge 2$

REGULARIZATION

Mollifier φ such that $\int \varphi(x) dx = 1$ Distributions are mollified by convolution with $\delta_{\epsilon}(x) = \frac{1}{\epsilon^d} \varphi\left(\frac{x}{\epsilon}\right)$ Mollified Heaviside distribution $\theta_{\epsilon}(x) = \int_{-\infty}^{x} \delta_{\epsilon}(y) dy$

Then,

$$\theta \delta = \lim_{\epsilon \to 0} \theta_{\epsilon} \delta_{\epsilon} = \frac{1}{2} \delta$$

- But $\delta^2 = \lim_{\epsilon \to 0} \delta^2_{\epsilon}$ diverges
- Very heavy calculations (Colombeau generalized functions)

SINGULAR SUPPORT

• How detect a singular point in a distribution *u* ?

• Multiply by a smooth function $g \in \mathcal{D}(M)$ around $x \in M$

x

0

0

SINGULAR SUPPORT

Let u be a distribution on $M = \mathbb{R}^d$ and $g \in \mathcal{D}(M)$ such that gu is a smooth function. For $e_{\xi}(x) = e^{i\xi \cdot x}$

$$g(x)u(x) = \langle gu, \delta_x \rangle = \int \frac{d\xi}{(2\pi)^d} \langle gu, e_\xi \rangle e^{-i\xi \cdot x}$$

All the derivatives of gu exist: ∀N,∃C_N, s.t.∀ξ, |⟨gu, e_ξ⟩| ≤ C_N(1+|ξ|)^{-N}
The singular support of u is the complement of the set of points x ∈ M such that there is a g ∈ D(M) with gu a smooth function and g(x) ≠ 0

EASY PRODUCTS

You can multiply a distribution *u* and a smooth function *f*

$$\langle fu,g\rangle = \langle u,fg\rangle$$

You can multiply two distributions u and v with disjoint singular supports

$$\langle uv,g\rangle = \langle u,vfg\rangle + \langle v,u(1-f)g\rangle$$

where

f = 0 on a neighborhood of the singular support of v
f = 1 on a neighborhood of the singular support of u

HARD PRODUCTS

Product of distributions with common singular supportConsider

$$u_{+}(x) = \frac{1}{x - i0^{+}} = i \int_{0}^{\infty} e^{-ik\xi} d\xi$$

More precisely

$$\langle u_+, g \rangle = i \int_0^\infty \hat{g}(-\xi) d\xi$$

• Its singular support is $\Sigma(u_+) = \{0\}$

HARD PRODUCTS

Product of distributions with common singular support
Consider also

$$u_{-}(x) = \frac{1}{x + i0^{+}} = -i \int_{0}^{\infty} e^{ik\xi} d\xi$$

More precisely

$$\langle u_{-},g\rangle = -i\int_{0}^{\infty}\hat{g}(\xi)d\xi$$

• Its singular support is $\Sigma(u_{-}) = \{0\}$

- Convolution theorem $\widehat{uv} = \widehat{u} \star \widehat{v}$
- Define the product by $uv = \mathcal{F}^{-1}(\widehat{u} \star \widehat{v})$

0

Example

$$u_+(x) = \frac{1}{x - i0^+}$$

 $\widehat{u_+}(\xi) = 2i\pi\theta(\xi)$

• Square of u_+

 $\widehat{u_+^2}(\xi) = -2\pi \int_{\mathbb{R}} \theta(\eta) \theta(\xi - \eta) d\eta = -2\pi \xi \theta(\xi)$

Example $u_{+}(x) = \frac{1}{x - i0^{+}} \qquad \widehat{u_{+}}(\xi) = 2i\pi\theta(\xi)$ $u_{-}(x) = \frac{1}{x + i0^{+}} \qquad \widehat{u_{-}}(\xi) = -2i\pi\theta(-\xi)$

ξ

• Product u_+u_-

 $\widehat{u_{+}u_{-}}(\xi) = 2\pi \int_{\mathbb{R}} \theta(\eta)\theta(\eta - \xi)d\eta \quad \text{diverges}$

 $\widehat{u}(\eta)$ can be integrable in **some** direction

The non-integrable directions of $\hat{u}(\eta)$ can be compensated for by the integrable directions of $\hat{v}(\xi - \eta)$

Not integrable : u_+u_- is not well-defined

- Define the product by $uv = \mathcal{F}^{-1}(\widehat{u} \star \widehat{v})$
- What if the distributions have no Fourier transform?
- The product of distributions is local: w = uv near x if $\widehat{f^2w} = \widehat{fu} \star \widehat{fv}$ for f = 1 in a neighborhood of x
- How should the integral converge?

$$\widehat{f^2 uv}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{fu}(\eta) \widehat{fv}(\xi - \eta) d\eta$$

 Absolute convergence is not enough if we want the Leibniz rule to hold

How can the integral converge?

$$\widehat{f^2 uv}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{fu}(\eta) \widehat{fv}(\xi - \eta) d\eta$$

 The order of fu is finite: |fu(η)| ≤ C(1 + |η|)^m
 If fu(η) does not decrease along direction η, then fv(ξ − η) must decrease faster than any inverse polynomial

Conversely, $\widehat{fu}(\eta)$ must compensate for the directions along which $\widehat{fv}(\xi - \eta)$ does not decrease fast

OUTLINE

Trying to multiply distributions

- Singular support
- Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theoryTopology

THE WAVE FRONT SET

Mikio Sato 1928Lars Valter Hörmander 1931-2012

WAVE FRONT SET

A point (x₀, ξ₀) ∈ T^{*}ℝ^d does not belong to the wave front set of a distribution u if there is a test function f with f(x₀) ≠ 0 and a conical neighborhood V ⊂ ℝ^d of ξ₀ such that, for every integer N there is a constant C_N for which

*ξ*0•

$$|\widehat{fu}(\xi)| \le C_N (1+|\xi|)^{-N}$$

for every $\xi \in V$

WAVE FRONT SET

- The wave front set is a cone: if $(x, \xi) \in WF(u)$, then $(x, \lambda\xi) \in WF(u)$ for every $\lambda > 0$
- The wave front set is closed
- $WF(u+v) \subset WF(u) \cup WF(v)$
- The singular support of u is the projection of WF(u) on the first variable

EXAMPLES

- The wavefront set describes in which direction the distribution is singular above each point of the singular support
- The Dirac δ function is singular at x = 0 and its
 Fourier transform is δ(ξ) = 1
- Its wave front set is $WF(\delta) = \{(0,\xi); \xi \neq 0\}$
- The distribution $u_+(x) = (x i0^+)^{-1}$ is also singular at x = 0 but its Fourier transform is $\widehat{u_+}(\xi) = 2i\pi\theta(\xi)$
- Its wave front set is $WF(u_+) = \{(0,\xi); \xi > 0\}$

CHARACTERISTIC FUNCTION

Relation to the Radon transform

CHARACTERISTIC FUNCTION

• Characteristic function of a disk: the wave front set is perpendicular to the edge

The wave front set is used in edge detection for machine vision and image processing

CHARACTERISTIC FUNCTION

• Shape and wave front set detection by counting intersections

DISTRIBUTION PRODUCT

Product of distributions

$$\widehat{f^2 uv}(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \widehat{fu}(\eta) \widehat{fv}(\xi - \eta) d\eta$$

 Hörmander thm: The product of two distributions u and v is well defined if there is not point (x, ξ) ∈ WF(u) such that (x, -ξ) ∈ WF(v)

The wave front set of the product is $WF(uv) \subset WF(u) \oplus WF(v) \cup WF(u) \cup WF(v)$

 $WF(u) \oplus WF(v) = \{(x, \xi + \eta); (x, \xi) \in WF(u) \text{ and } (x, \eta) \in WF(v)\}$

OUTLINE

Trying to multiply distributions

- Singular support
- Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory

Topology

QFT: THE CAUSAL APPROACH

Stueckelberg

Bogoliubov

Klaus Fredenhagen Romeo Brunetti

Stefan Hollands

Radzikowski

Robert Wald

Kasia Rejzner

PROPAGATOR

Wightman propagator

- Product of fields $\Delta_{+}(x) = \langle 0 | \varphi(x) \varphi(0) | 0 \rangle$ Singular support $\{(x, y, t); t^{2} - x^{2} - y^{2} = 0\}$
- Wavefront set Powers Δ^n_+ are allowed

Quantization does not need renormalization

PROPAGATOR

Feynman propagator

 Time-ordered product of fields $\Delta_F(x) = \langle 0 | T(\varphi(x)\varphi(0)) | 0 \rangle$ Singular support $\{(x, y, t); t^2 - x^2 - y^2 = 0\}$ Wavefront set • Powers Δ_F^n are allowed away from x = 0Powers Δ_F^n are forbidden at x = 0

• Renormalize only at x = 0

WAVE FRONT SET

- Let $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ be open sets and $f : U \to V$ a smooth map.
- The pull-back of a distribution $v \in \mathcal{D}'(V)$ by f is determined by the wave front set
- The dual space of a distribution is determined by its wave front set
- The restriction of a distribution to a submanifold is determined by the wave front set
- The propagation of singularities is described by the wave front set

EXAMPLES

- The true propagator is G(x, y) = Δ_F(x − y)
 By pull-back by f(x, y) = x − y, its wave front set is WF(G) = {((x, y), (ξ, −ξ)); (x − y, ξ) ∈ WF(Δ_F)}
 In curved space time, the wave front set of the propagator is obtained by pull-back:
 - either $((x, x), (\xi, -\xi))$ for arbitrary $\xi \neq 0$
 - or ((x, y), (ξ, -η)) such that there is a null geodesic
 between x and y, and η is obtained by parallel transporting ξ
 along the geodesic

Feynman diagram

Feynman amplitude

- The amplitude is well defined, except on the diagonals
- It remains to renormalize to define the product on the diagonals
- The wave front set of the renormalized amplitude can be estimated

OUTLINE

Trying to multiply distributions

- Singular support
- Fourier transfom
- The wave front set
 - Examples
 - Characteristic functions
 - Hörmander's theorem for distribution products
- Examples in quantum field theory
 - Topology

- For a closed cone $\Gamma \subset T^*M$ we define $\mathcal{D}'_{\Gamma}(U) = \{ u \in \mathcal{D}'(U); WF(u) \subset \Gamma \}$
- We furnish $\mathcal{D}'_{\Gamma}(U)$ with a locally convex topology
- Let *E* be a vector space over \mathbb{C} . A *semi-norm* on *E* is a map $p: E \to \mathbb{R}$ such that
 - $p(\lambda x) = |\lambda| p(x)$ for all $\lambda \in \mathbb{C}$ and $x \in E$
 - $p(x+y) \le p(x) + p(y)$ for all $x, y \in E$
- A locally convex space is a vector space E equipped with a family $(p_i)_{i \in I}$ of semi-norms on E
- The sets V_{i,ε} = {x ∈ E; p_i(x) < ε} form a sub-base of the topology generated by the semi-norms

• The seminorms of $\mathcal{D}'_{\Gamma}(U)$ are:

- $p_B(u) = \sup_{f \in B} |\langle u, f \rangle|$ where B is bounded in $\mathcal{D}(U)$ are the seminorms of the strong topology of $\mathcal{D}'(U)$
- $||u||_{N,V,\chi} = \sup_{k \in V} (1+|k|)^N |\widehat{u\chi}(k)|$ for all integers N, closed cones V and functions $\chi \in \mathcal{D}(U)$ s.t. $\operatorname{supp}\chi \times V \cap \Gamma = \emptyset$
- The second set of seminorms is used to ensure that the Fourier transform of u ∈ D'_Γ(U) around x ∈ supp(χ) decreases faster than any inverse polynomial: the wave front set of u ∈ D'_Γ(U) is in Γ

Thm. (CB, Y. Dabrowski)

- $\mathcal{D}'_{\Gamma}(U)$ is complete
- $\mathcal{D}'_{\Gamma}(U)$ is semi-Montel (its closed and bounded subsets are compact)
- $\mathcal{D}'_{\Gamma}(U)$ is semi-reflexive
- $\mathcal{D}'_{\Gamma}(U)$ is nuclear
- $\mathcal{D}'_{\Gamma}(U)$ is a normal space of distributions

Thm. (CB, N. V. Dang, F. Hélein) With the topology of $\mathcal{D}'_{\Gamma}(U)$

- The pull-back is continuous
- The push-forward is continuous
- The multiplication of distributions is hypocontinuous
- The tensor product of distributions is hypocontinuous
- The duality pairing is hypocontinuous

FOR YOUR ATTENTION

