Renormalization and Euler-Maclaurin Formula on Cones

Li GUO
(joint work with Sylvie Paycha and Bin Zhang)

Rutgers University at Newark

Outline

- Conical zeta values and multiple zeta values;
- Double shuffle relations and double subdivision relations;
- Renormalization of conical zeta values;
- Euler-Maclaurin formula.

Cones

- A (closed polyhedral) cone in $\mathbb{R}_{\geq 0}^{k}$ is defined to be the convex set

$$
\left\langle v_{1}, \cdots, v_{n}\right\rangle:=\mathbb{R}_{\geq 0} v_{1}+\cdots+\mathbb{R}_{\geq 0} v_{n}, v_{i} \in \mathbb{R}_{\geq 0}^{k}, 1 \leq i \leq n .
$$

- The interior of a cone $\left\langle v_{1}, \cdots, v_{n}\right\rangle$ is an open (polyhedral) cone

$$
\left\langle v_{1}, \cdots, v_{n}\right\rangle^{0}:=\mathbb{R}_{>0} v_{1}+\cdots+\mathbb{R}_{>0} v_{n} .
$$

- The set $\left\{v_{1}, \cdots, v_{n}\right\}$ is called the generating set or the spanning set of the cone. The dimension of a cone is the dimension of linear subspace generated by it.
- Let \mathcal{C}_{k} (resp. $\mathcal{O} \mathcal{C}_{k}$) denote the set of closed (resp. open cones) in \mathbb{R}^{k}, $k \geq 1$. For $k=0$ we set $\mathfrak{C}_{0}=\{0\}$ (resp. $\mathcal{O} \mathfrak{C}_{0}=\{0\}$) by convention. Through the natural inclusions $\mathfrak{C}_{k} \rightarrow \mathcal{C}_{k+1}$ (resp. $\mathcal{C}_{k} \rightarrow \mathcal{O}_{k+1}$) from the natural inclusion $\mathbb{R}^{k} \rightarrow \mathbb{R}^{k+1}$, we define $\mathcal{C}=\underset{\rightarrow}{\lim } \mathcal{C}_{k}($ resp. $\left.\mathcal{O C}=\underset{\longrightarrow}{\lim } \mathcal{O C}_{k}\right)$.
- A simplicial cone is defined to be a cone spanned by linearly independent vectors.
- A rational cone is a cone spanned by vectors in $\mathbb{Z}^{k} \subseteq \mathbb{R}^{k}$.
- A smooth cone is a rational cone with a spanning set that is a part of a basis of $\mathbb{Z}^{k} \subseteq \mathbb{R}^{k}$. In this case, the spanning set is unique and is called the primary set of the cone.
- A cone is called strongly convex or pointed if it does not contain any linear subspace.
- A subdivision of a closed cone $C \in \mathcal{C}_{k}$ is a set $\left\{C_{1}, \cdots, C_{r}\right\} \subseteq \mathcal{C}_{k}$ such that $C=\cup_{i=1}^{r} C_{i}, C_{1}, \cdots, C_{r}$ have the same dimension C and intersect along their faces. The faces of the relative interior give an open subdivision of C° :

$$
\begin{gathered}
\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{1}, e_{1}+e_{2}\right\rangle \sqcup\left\langle e_{1}+e_{2}, e_{e}\right\rangle \\
\Rightarrow\left\langle e_{1}, e_{2}\right\rangle^{o}=\left\langle e_{1}, e_{1}+e_{2}\right\rangle^{o} \sqcup\left\langle e_{1}+e_{2}, e_{e}\right\rangle^{o} \sqcup\left\langle e_{1}+e_{2}\right\rangle^{o} .
\end{gathered}
$$

- For $\vec{x}=\left(x_{1}, \cdots, x_{k}\right)$ and $\vec{y}=\left(y_{1}, \cdots, y_{k}\right)$ in \mathbb{R}^{k}, let (\vec{x}, \vec{y}) denote the inner product $x_{1} y_{1}+\cdots+x_{k} y_{k}$. Through this inner product, \mathbb{R}^{k} is identified with its own dual space $\left(\mathbb{R}^{k}\right)^{*}$.

4

Conical zeta values

- Let C be a smooth cone. The conical zeta function of C is

$$
\zeta(C ; \vec{s}):=\sum_{\left(n_{1}, \cdots, n_{k}\right) \in C^{o} \cap \mathbb{Z}^{k}} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}, \vec{s} \in \mathbb{C}^{k}
$$

if the sum converges. When $s_{i}, 1 \leq i \leq k$, are integers, $\zeta(\vec{s})$ is called a conical zeta value (CZV). Convention: $0^{s}=1$ for any s. Hence $\zeta(\vec{s})$ does not depend on the choice of k.

- If $s_{i} \geq 2,1 \leq i \leq k$, then $\zeta(C ; \vec{s})$ converges.
- If $\left\{C_{i}\right\}_{i}$ is an open cone subdivision of C, then

$$
\zeta(C ; \vec{s})=\sum_{i} \zeta\left(C_{i} ; \vec{s}\right)
$$

- The cone subdivision

$$
\left\langle e_{1}, e_{2}\right\rangle^{o}=\left\langle e_{1}, e_{1}+e_{2}\right\rangle^{o} \sqcup\left\langle e_{1}+e_{2}, e_{2}\right\rangle^{o} \sqcup\left\langle e_{1}+e_{2}\right\rangle^{o}
$$

gives

$$
\begin{aligned}
& \zeta\left(\left\langle e_{1}, e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)\right)=\zeta\left(\left\langle e_{1}, e_{1}+e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)\right) \\
& \quad+\zeta\left(\left\langle e_{1}+e_{2}, e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)+\zeta\left(\left\langle e_{1}+e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)\right.\right.
\end{aligned}
$$

Chen cones and multiple zeta values

- A Chen cone of dimension k is a cone

$$
C_{k, \sigma}:=\left\langle e_{\sigma(1)}, e_{\sigma(1)}+e_{\sigma(2)}, \cdots, e_{\sigma(1)}+\cdots+e_{\sigma(k)}\right\rangle
$$

where $\sigma \in S_{k}$. Let C_{k} denote the standard Chen cone spanned by $\left\{e_{1}, \cdots, e_{k}\right\}$.

- Then $\zeta\left(C_{k, \sigma} ; s_{1}, \cdots, s_{k}\right)=\zeta\left(s_{\sigma(1)}, \cdots, s_{\sigma(k)}\right)$,

$$
\zeta\left(C_{k, \mathrm{id}} ; s_{1}, \cdots, s_{k}\right)=\zeta\left(s_{1}, \cdots, s_{k}\right)
$$

- The stuffle product of two MZVs $\zeta\left(r_{1}, \cdots, r_{k}\right)$ and $\zeta\left(s_{1}, \cdots, s_{\ell}\right)$ is recovered by the subdivision of the cone $C_{k} \times C_{\ell}$ (direct product) into Chen cones.
- For example, the open cone subdivision relation

$$
\begin{aligned}
& \zeta\left(\left\langle e_{1}, e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)\right)=\zeta\left(\left\langle e_{1}, e_{1}+e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)\right) \\
& \quad+\zeta\left(\left\langle e_{1}+e_{2}, e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)+\zeta\left(\left\langle e_{1}+e_{2}\right\rangle^{o} ;\left(s_{1}, s_{2}\right)\right.\right.
\end{aligned}
$$

gives the stuffle relation

$$
\zeta\left(s_{1}\right) \zeta\left(s_{2}\right)=\zeta\left(s_{1}, s_{2}\right)+\zeta\left(s_{2}, s_{1}\right)+\zeta\left(s_{1}+s_{2}\right)
$$

Multiple zeta values

- The multiple zeta value algebra is

$$
\mathbf{M Z V}:=\mathbb{Q}\left\{\zeta\left(s_{1}, \cdots, s_{k}\right) \mid s_{i} \geq 1, s_{1} \geq 1\right\} .
$$

- The quasi-shuffle algebra \mathscr{H}^{*} has the underlying vector space

$$
\mathbb{Q}\left\langle z_{s} \mid s \geq 1\right\rangle
$$

with the quasi-shuffle product. It contains the subalgebra

$$
\mathcal{H}_{0}^{*}:=\mathbb{Q} .1 \oplus\left(\bigoplus_{s_{1} \geq 2} \mathbb{Q} z_{s_{1}} \cdots z_{s_{k}}\right) \subseteq \mathcal{H}^{*}
$$

The stuffle relation of MZVs is encoded in the algebra homomorphism

$$
\zeta^{*}: \mathcal{H}_{0}^{*} \longrightarrow \mathbf{M Z V}, \quad z_{s_{1}} \cdots z_{s_{k}} \mapsto \zeta\left(s_{1}, \cdots, s_{k}\right)
$$

Double shuffle relation

- The shuffle algebra \mathcal{H}^{\amalg} has the underlying vector space $\mathbb{Q}\left\langle x_{0}, x_{1}\right\rangle$ equipped with the shuffle product of words. It contains the subalgebra

$$
\mathcal{H}_{0}^{\mathrm{II}}:=\mathbb{Q} .1 \bigoplus x_{0} \mathcal{H}^{\mathbb{W}} x_{1} .
$$

The shuffle relation of the MZVs is encoded in the algebra homomorphism

$$
\zeta^{\amalg \mathrm{II}}: \mathcal{H}_{0}^{\amalg \mathrm{II}} \rightarrow \mathbf{M Z V}, \quad x_{0}^{s_{1}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1} \mapsto \zeta\left(s_{1}, \cdots, s_{k}\right) .
$$

- There is a natural bijection of abelian groups (but not algebras)

$$
\eta: \mathcal{H}_{0}^{\text {III }} \rightarrow \mathcal{H}_{0}^{*}, \quad 1 \leftrightarrow 1, x_{0}^{s_{1}-1} x_{1} \cdots x_{0}^{s_{k}-1} x_{1} \leftrightarrow z_{s_{1}} \cdots z_{s_{k}} .
$$

- Then the fact that MZVs can be multiplied in two ways is reflected by

Double shuffle relation

$$
\zeta^{*}\left(w_{1} * w_{2}-\eta\left(\eta^{-1}\left(w_{1}\right) \amalg \eta_{8}^{-1}\left(w_{2}\right)\right)\right), \quad w_{1}, w_{2} \in \mathcal{H}_{0}^{*}
$$

Linearly constrained zeta values (LCZ)

- Let $\left\langle v_{1}, \cdots, v_{k}\right\rangle$ be a smooth close cone with ita (unique) primitive generating set.
- For $s_{1}, \cdots, s_{k} \geq 1$, called the formal expression $\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}$ a decorated smooth cone.
- Define the linearly constrained zeta value (LZV)

$$
\begin{aligned}
& \zeta^{c}\left(\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}\right) \\
& :=\sum_{m_{1}=1}^{\infty} \cdots \sum_{m_{r}=1}^{\infty} \frac{1}{\left(a_{11} m_{1}+\cdots+a_{1 r} m_{r}\right)^{s_{1}} \cdots\left(a_{k 1} m_{1}+\cdots+a_{k r} m_{r}\right)^{s_{k}}}
\end{aligned}
$$

if the sum is convergent, where $v_{i}=\sum_{j=1}^{r} a_{i j} e_{j}, 1 \leq i \leq k$. When $\left[v_{1}\right] \cdots\left[v_{k}\right]$ is a Chen cone $\left[e_{1}\right] \cdots\left[e_{1}+\cdots+e_{k}\right]$, then we have

$$
\zeta^{c}\left(\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}\right)=\zeta\left(s_{1}, \cdots, s_{k}\right)
$$

Subdivision of decorated closed cones

- Let $\left\{\left\langle v_{i 1}, \cdots, v_{i k}\right\rangle\right\}_{i}$ be a smooth subdivision of the smooth cone $\left\langle v_{1}, \cdots, v_{k}\right\rangle$. Call $\sum_{i}\left[v_{i 1}\right] \cdots\left[v_{i k}\right]$ an algebraic subdivision of $\left[v_{1}\right] \cdots\left[v_{k}\right]$.
- Let $\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}$ be a decorated smooth closed cone.
- Define $\delta_{e_{i}}\left(\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}\right)=\sum_{j} s_{j}\left(e_{i}, v_{j}\right)\left[v_{1}\right]^{s_{1}} \cdots\left[v_{j}\right]^{s_{j}+1} \cdots\left[v_{k}\right]^{s_{k}}$. For $u=\sum_{i} c_{i} e_{i}$, define $\delta_{u}=\sum_{i} c_{i} \delta_{e_{i}}$. Then
$\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}=\frac{1}{\left(s_{1}-1\right)!\cdots\left(s_{k}-1\right)!} \delta_{v_{1}^{*}}^{s_{1}-1} \cdots \delta_{v_{k}^{*}}^{s_{k}-1}\left(\left[v_{i 1}\right] \cdots\left[v_{i k}\right]\right)$.
- Call

$$
\sum_{i} \frac{1}{\left(s_{1}-1\right)!\cdots\left(s_{k}-1\right)!} \delta_{v_{1}^{*}}^{s_{1}-1} \cdots \delta_{v_{k}^{*}}^{s_{k}-1}\left(\left[v_{i 1}\right] \cdots\left[v_{i k}\right]\right)
$$

an algebraic subdivision of $\left[v_{1}\right]^{s_{1}} \cdots\left[v_{k}\right]^{s_{k}}$. Here $v_{1}^{*}, \cdots, v_{k}^{*}$ is a dual basis of v_{1}, \cdots, v_{k}.

- Let $D=\sum_{i} a_{i} D_{i}$ be an algebraic subdivision of a decorated smooth cone D. Then

$$
\zeta^{C}(D)=\sum_{i} a_{i} \zeta^{C}\left(D_{i}\right)
$$

- This generalizes the shuffle relation of MZVs.

10

Relating open and closed subdivisions

- Let $G L_{r}(\mathbb{Z})$ denote the set of $r \times r$ unimodular matrices. Let $M \in G L_{r}(\mathbb{Z})$ and $\vec{s}:=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{Z}_{>0}^{r}$. Let v_{1}, \cdots, v_{r} and u_{1}, \cdots, u_{r} be the row and column vectors of M. The (decorated) cone pair associated with M and \vec{s} is the pair (C, D) consisting of the decorated open cone $C:=C_{M, \vec{s}}=\left(\left\langle u_{1}, \cdots, u_{r}\right\rangle^{0}, \vec{s}\right)$ and the decorated closed cone $D:=D_{M, \vec{s}}=\left[v_{1}\right]^{S_{1}} \cdots\left[v_{r}\right]^{S_{r}}$. We call the pair convergent if the corresponding ζ-values $\zeta^{0}(C)$ and $\zeta^{c}(D)$ converge.
- Let $\mathcal{D T P}$ denote the set of cone pairs $\left(C_{M, \vec{s}}, D_{M, \vec{s}}\right)$ where $M \in O(\mathbb{Z})$ and $\vec{s} \in \mathbb{Z}_{\geq 0}^{r}$. Let

$$
p^{o}: \mathbb{Q D T P} \rightarrow \mathbb{Q D C}
$$

and

$$
p^{c}: \mathbb{Q D J P} \rightarrow \mathbb{Q D \mathcal { N C }}
$$

denote the natural projections.

- For any cone pair $(C, D) \in \mathcal{D T P}$, we have

$$
\zeta^{O}(C)=\zeta^{C}(D)
$$

if either side makes sense.

Double subdivision relation

- Let (C, D) be a convergent cone pair. Let $\left\{C_{i}\right\}_{i}$ be an open subdivision of the decorated open cone C and let $\sum_{j} c_{j} D_{j}$ be a subdivision of the decorated closed cone D. Also let $D_{j}^{T} \in \mathcal{D C}$ be the transpose cone of D^{j}, that is, $\left(D_{j}^{T}, D_{j}\right)$ is a cone pair. Then

$$
\begin{equation*}
\sum_{i} C_{i}-\sum_{j} c_{j} D_{j}^{T} \tag{1}
\end{equation*}
$$

lies in the kernel of ζ^{0}. It is called a double subdivision relation.

- For any not necessarily convergent cone pair (C, D), let $\left\{C_{i}\right\}$ be a subdivision of C and $\sum_{j} a_{j} D_{j}$ a subdivision of D. If $\sum_{i} C_{i}-\sum_{j} a_{j} D_{j}^{T}$ is in $\mathbb{Q D C}$, then it is called an extended double subdivision relation.
- Hunch. The kernel of ζ^{0} is the subspace $I_{E D S}$ of $\mathbb{Q D C}$ generated by the extended double subdivision relations.

Double subdivision relation

13

Algebraic Birkhoff Decomposition

- Algebraic Birkhoff Decomposition. Let \mathcal{H} be a connected filtered Hopf algebra, $R=P(R) \oplus(\mathrm{id}-P)(R)$ a commutative Rota-Baxter algebra with an idempotent Rota-Baxter operator P. Any algebra homomorphism $\phi: \mathcal{H} \rightarrow R$ has a unique decomposition into algebra homomorphisms

$$
\phi=\phi_{-}^{-1} \star \phi_{+}, \quad\left\{\begin{array}{l}
\phi_{-}: \mathcal{H} \rightarrow \mathbb{C}+P(R) \text { (counter term) } \\
\phi_{+}: \mathcal{H} \rightarrow \mathbb{C}+(\mathrm{id}-P)(R) \text { (renormalization) }
\end{array}\right.
$$

14

- In QFT renormalization (Dim-Reg scheme), we take the triple $\left(\mathcal{H}_{\mathrm{FG}}, R_{\mathrm{FG}}, \phi_{\mathrm{FG}}\right)$ with
- Hopf algebra $\mathcal{H}_{\mathrm{FG}}$ of Feynman graphs;
- $\left.R_{\mathrm{FG}}=\mathbb{C}\left[\varepsilon^{-1}, \varepsilon\right]\right]$ of Laurent series, with the pole part projection P;
- $\phi_{\mathrm{FG}}: \mathcal{H}_{\mathrm{FG}} \rightarrow R_{\mathrm{FG}}$ from dimensional regularized Feynman rule.
- Then Algebraic Birkhoff Decomposition gives

$$
\phi_{\mathrm{FG}}=\phi_{\mathrm{FG},-} \star \phi_{\mathrm{FG},+}
$$

Feynman rules

Generalized Algebraic Birkhoff Decomposition

- Let $\mathbf{C}=\oplus_{n>0} \mathbf{C}^{(n)}$ be a (co)differential connected coalgebra (so $\mathbf{C}^{(0)}=\mathbf{k} J$) with counit $\varepsilon: \mathbf{C} \rightarrow \mathbf{k}$ and coderivations $\delta_{\sigma}, \sigma \in \Sigma$. Let A be a differential algebra with derivations $\partial_{\sigma}, \sigma \in \Sigma$. Let $A=A_{1} \oplus A_{2}$ be a linear decomposition such that $1_{A} \in A_{1}$ and

$$
\partial_{\sigma}\left(A_{i}\right) \subseteq A_{i}, \quad i=1,2, \quad \sigma \in \Sigma .
$$

Let P be the projection of A to A_{1} along A_{2}. Denote

$$
\mathcal{G}(\mathbf{C}, A):=\left\{\phi: \mathbf{C} \rightarrow A \mid \phi(J)=1_{A}, \partial_{\sigma} \phi=\phi \delta_{\sigma}, \sigma \in \Sigma\right\} .
$$

Then any $\phi \in \mathcal{G}(\mathbf{C}, A)$ has a unique decomposition

$$
\varphi=\varphi_{1}^{*(-1)} * \varphi_{2},
$$

where $\varphi_{i} \in \mathcal{G}(\mathbf{C}, A), i=1,2$, satisfy $(\operatorname{ker} \varepsilon) \subseteq A_{i}$ (hence $\varphi_{i}: \mathbf{C} \rightarrow \mathbf{k} 1_{A}+A_{i}$). If moreover A_{1} is a subalgebra of A then $\phi_{1}^{*(-1)}$ lies in $\mathcal{G}\left(\mathbf{C}, A_{1}\right)$.

Transverse cones

- Identify $V_{k}:=\mathbb{R}^{k}$ with its dual through a fixed inner product (\cdot, \cdot).
- For a cone C, let $\operatorname{lin}(C)$ denote the subspace spanned by C.
- For any closed cone C and its face F, define the transverse cone (Berline and Vergne) $t(C, F)$ along F to be the projection of C to F^{\perp}, where $F^{\perp}=\operatorname{lin} \frac{\perp}{C}(F)$ is the orthogonal completion of $\operatorname{lin}(F)$ in $\operatorname{lin}(C)$.
- For example, the transverse cone of $\left\langle e_{1}, e_{1}+e_{2}\right\rangle$ along $\left\langle e_{1}+e_{2}\right\rangle$ is $\left\langle e_{1}-e_{2}\right\rangle$.

Coproduct of cones

- We equip the linear space $\mathbb{Q C C}$ of close cones with a coproduct
and a counit

$$
\Delta: \mathbb{Q C C} \rightarrow \mathbb{Q C C} \otimes \mathbb{Q C C}, \Delta C:=\sum_{F \preceq C} t(C, F) \otimes F
$$

$$
\varepsilon: \mathbb{Q C C} \rightarrow \mathbb{Q}, \varepsilon(C)= \begin{cases}1, & C=\{0\} \\ 0, & C \neq\{0\}\end{cases}
$$

- With $\mathcal{C e}^{(n)}:=\{C \in \mathcal{C} \mathcal{C} \mid \operatorname{dim} C=n\}, n \geq 0$, we have a connected coalgebra

$$
\mathcal{C C}=\oplus_{n \geq 0} \mathcal{C e}^{(n)}
$$

Decorated closed cones

- Let $\mathbb{Q D P}$ denote the space of decorated cones $(C ; \vec{s})$ for $\vec{s} \in \mathbb{Z}_{\leq 0}$. Extend \triangle on $\mathbb{Q C C}$ to $\mathbb{Q D C}$ by derivation:

$$
\Delta(C ; \vec{s})=\left(\Delta \circ \delta_{i}\right)\left(C ; \vec{s}+e_{i}\right)=\left(D_{i} \circ \Delta\right)\left(C ; \vec{s}+e_{i}\right) .
$$

- Then $\mathbb{Q D C}$ is a connected coalgebra with derivations.

Regularized CZVs

- A meromorphic function $f(\vec{z})$ on \mathbb{C}^{k} is said to have linear poles at zero if there are linear forms $L_{i}(\vec{z})=\sum_{j} a_{i j} z_{j}$, such that $\left(\prod_{i} L_{i}\right) f$ is homomorphic at zero.
- Let $\mathcal{M}\left(\mathbb{C}^{k}\right)$ be the algebra of such functions and let $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\cup_{k} \mathcal{M}\left(\mathbb{C}^{k}\right)$.
- We also have the summation map

$$
S: \mathbb{Q C e} \rightarrow \mathcal{M}\left(\mathbb{C}^{\infty}\right), S(C)(\vec{z}):=\sum_{\vec{n} \in C^{\circ} \cap \mathbb{Z}^{k}} e^{-(\vec{z}, \vec{n})} .
$$

- By taking derivations, S extends to

$$
\begin{aligned}
& S: \mathbb{Q D C e} \rightarrow \mathcal{M}\left(\mathbb{C}^{\infty}\right), \\
& S(C ; \vec{s}):=\zeta(C ; \vec{s} ; \vec{z}):=\sum_{\vec{n} \in C^{\circ} \cap \mathbb{Z}^{k}} \frac{e^{-(\vec{z}, \vec{n})}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{K}}} .
\end{aligned}
$$

This can be regarded as a regularization of

$$
\zeta(C ; \vec{s} ; 0)=\sum_{\vec{n} \in C^{\circ} \cap \mathbb{Z}^{k}} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}} .
$$

20

Algebraic Birkhoff Decomposition

- There is a linear decomposition

$$
\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\mathcal{M}_{+}\left(\mathbb{C}^{\infty}\right) \oplus \mathcal{M}_{-}\left(\mathbb{C}^{\infty}\right)=\mathcal{M}_{1}\left(\mathbb{C}^{\infty}\right) \oplus \mathcal{M}_{2}\left(\mathbb{C}^{\infty}\right)
$$

where $\mathcal{M}_{+}\left(\mathbb{C}^{\infty}\right)=\operatorname{Hol}\left(\mathbb{C}^{\infty}\right)$ is the space of functions holomorphic at 0 and $\mathcal{M}_{-}\left(\mathbb{C}^{\infty}\right)$ is spanned by

$$
\sum \frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{r_{1}^{\prime}} \cdots L_{n}^{r_{n}}}
$$

where $h \in \mathcal{M}_{+}\left(\mathbb{C}^{\infty}\right), \ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ independent linear forms such that $\left(\ell_{i}, L_{j}\right)=0, \forall i, j$.

- Together with the coproduct on $\mathbb{Q D P}$, we obtain a (Birkhoff) decomposition

$$
S=S_{1}^{\star(-1)} \star S_{2},
$$

where $S_{i}: \mathbb{Q D E} \longrightarrow \mathcal{M}_{i}\left(\mathbb{C}^{\infty}\right)$.

- The value $\zeta(C ; \vec{s}):=S_{1}^{\star(-1)}(S ; \vec{s})(0)$ is called the renormalized conical zeta value of ($C ; \vec{s}$).

21

Classical Euler-Maclaurin Formula

- The (classical) Euler-Maclaurin formula relates the discrete sum $S(\varepsilon):=\sum_{k=0}^{\infty} e^{-\varepsilon k}=\frac{1}{1-e^{-\varepsilon}}$ for positive ε to the integral

$$
I(\varepsilon):=\int_{0}^{\infty} e^{-\varepsilon x} d x=\frac{1}{\varepsilon}
$$

by means of the interpolator
$\mu(\varepsilon):=S(\varepsilon)-I(\varepsilon)=S(\varepsilon)-\frac{1}{\varepsilon}=\frac{1}{2}+\sum_{k=1}^{K} \frac{B_{2 k}}{(2 k)!} \varepsilon^{2 k-1}+o\left(\varepsilon^{2 K}\right) \quad$ for all $K \in$
which is holomorphic at $\varepsilon=0$.

- This formula becomes a special case of the Euler-Maclaurin formula for cone, of Berline and Vergne, when the cone is taken to be $[0, \infty)$.

Euler-Maclaurin Formula for Cones

- For a smooth cone C, define

$$
I(C)(\vec{z}):=\int_{C} e^{-(\vec{x}, \vec{z})} d \vec{x}
$$

This gives rise to a map

$$
I: \mathbb{Q C C} \rightarrow \mathcal{M}\left(\mathbb{C}^{\infty}\right)
$$

- Euler-Maclaurin Formula (Berline-Vergne) There is a map (interpolator)

$$
\mu: \mathbb{Q C e} \rightarrow \operatorname{Hol}\left(\mathbb{C}^{\infty}\right)
$$

such that

$$
S(C)=\sum_{F \text { face of } C} \mu(t(C, F)) I(F)
$$

Birkhoff Factorization and Euler-Maclaurin

- Note that S_{+}and S_{-}are unique such that $S_{+}(\operatorname{ker} \varepsilon) \subseteq \mathcal{M}_{+}$and $S_{-}(\operatorname{ker} \varepsilon) \subseteq \mathcal{M}_{-}$where $\varepsilon: \mathbb{Q D C P} \rightarrow \mathbb{Q}$ is the counit.
- Thus comparing with $S=\mu \star /$ and $I: \mathbb{Q D C P} \rightarrow \mathcal{M}_{-}$, we obtain

$$
\mu=S_{+}^{\star(-1)}, \quad I=S_{-} .
$$

Further,

$$
\mu=\pi_{+} S .
$$

References

- N. Berline and M. Vergne, Euler-Maclaurin formula for polytopes, Mosc. Math. J. 7 (2007) 355-386.
- N. Berline and M. Vergne, Local asymptotic Euler-Maclaurin expansion for Riemann sums over a semi-rational polyhedron, arXiv:1502.01671v1.
- L. G., S. Paycha and B. Zhang, Conical zeta values and their double subdivision relations, Adv. Math. 252 (2014) 343-381.
- L. G., S. Paycha and B. Zhang, Counting an infinite number of points: a testing ground for renormalization methods, In: Geometric, algebraic and topological methods for quantum field theory 2013.
- L. G., S. Paycha and B. Zhang, Decompositions and residue of meromorphic functions with linear poles in the light of the geometry of cones, arXiv:1501.00426.
- L. G., S. Paycha and B. Zhang, Algebraic Birkhoff Factorization and the Euler-Maclaurin Formula on cones, arXiv:1306.3420 (revised December 2015).
- L. G., S. Paycha and B. Zhang, Renormalized conical zeta values, preprint, 2016.
- Thank You!

