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Cones

A (closed polyhedral) cone in Rgo is defined to be the convex set

(Vi Vo) = RsgVvq + - + RV, v € RE, 1 < i<,
The interior of a cone (vy,--- , v,) is an open (polyhedral) cone
<V1a RS Vn>o = IR>OV‘I + -+ R>0Vn~
The set {vy,--- , vy} is called the generating set or the spanning set

of the cone. The dimension of a cone is the dimension of linear
subspace generated by it.

Let @, (resp. OC,) denote the set of closed (resp. open cones) in R,
k > 1. For k = 0 we set Cy = {0} (resp. OCy = {0}) by convention.
Through the natural inclusions Cx — Cx1 (resp. OCx — OCk. 1) from
the natural inclusion R — R+ we define € = lim € (resp.

OC = lim OCy).
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A simplicial cone is defined to be a cone spanned by linearly
independent vectors.

» A rational cone is a cone spanned by vectors in Z% C Rk,

A smooth cone is a rational cone with a spanning set that is a part of
a basis of Z¥ C RX. In this case, the spanning set is unique and is
called the primary set of the cone.

A cone is called strongly convex or pointed if it does not contain any
linear subspace.

A subdivision of a closed cone C € Cxisaset {Cy,---,Cr} C Cx
such that C = U;_,C;j, Cy,-- -, C, have the same dimension C and
intersect along their faces. The faces of the relative interior give an
open subdivision of C°:

(e1,62) = (€y,61 + ) LI (€1 + €2, €¢)

= (e1,62)° = (61,61 + €2)° LI (61 + €2,80)° L (61 + €2)°.

For X = (xy,--- ,xk) and ¥ = (yy,--- , yx) in RX, let (X, ¥) denote the
inner product x1y1 + - - - + Xx¥x. Through this inner product, R is
identified with its own dual space (R¥)*.
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Conical zeta values
Let C be a smooth cone. The conical zeta 1func’[ion of Cis
(N1, ,nk)ECONZK 1 k

if the sum converges. When s;, 1 < i < k, are integers, ((S) is called
a conical zeta value (CZV). Convention: 0% = 1 for any s. Hence ¢(S)
does not depend on the choice of k.

If s; > 2,1 < i <k, then {(C; S) converges.

If {C;}/ is an open cone subdivision of C, then

¢(C;8) = Zc(c,-; 3).

The cone subdivision
(e1,62)° = (61,81 + €2)° LI (€1 + €2, 82)° LI (€1 + €2)°

gives C((e1, €)% (51, 52)) = C((e1, 81 + €)% (51, S2))

+(((e1 + €2, €2)% (s1,82) + C((e1 + €2)% (54, 82).
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Chen cones and multiple zeta values
» A Chen cone of dimension k is a cone

Ck?g = <eg(1), (1)t €52), 1 E51) + -+ eo(k)>,
where o € Sk. Let Cx denote the standard Chen cone spanned by
{e1, -, ex}.

> Then ((Ckoi S, ,8k) = C(Sx(1)s 5 So(k))s

((Ch,iai S1, -+, Sk) = ((S1,- -, Sk).

» The stuffle product of two MZVs ((ry,--- ,rg) and {(s1,--- ,Sp) is
recovered by the subdivision of the cone Cx x C; (direct product) into
Chen cones.

» For example, the open cone subdivision relation

(((e1,€2)% (s1,82)) = C((e1, &1 + €2)% (51, 82))
+(((e1 + e2,€2)% (51, 82) + (((e1 + €2)° (51, 52)

gives the stuffle relation

((s1)¢(s2) = ((51, 82) + ((82, 51) + ((S1 + S2).
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Multiple zeta values

» The multiple zeta value algebra is
MZV = @{C(S1,~~' 7Sk)|S,' > 1,S1 > 1}
» The quasi-shuffle algebra H* has the underlying vector space
Q(zs|s > 1)

with the quasi-shuffle product. It contains the subalgebra

9{3 = Q1 D (@ QZS1 ...Zsk) C IC*

51>2

The stuffle relation of MZVs is encoded in the algebra
homomorphism

¢ Hy — M2V,  Zzg - zs — ((Sy,- -, Sk)-



Double shuffle relation

The shuffle algebra H™ has the underlying vector space Q(xo, x1)
equipped with the shuffle product of words. It contains the

subalgebra H = Q.1 @xoﬂ{”lm.

The shuffle relation of the MZVs is encoded in the algebra
homomorphism

¢ — M2V, xg"1x1 --~x§k_1x1 — ((S1,++ , Sk)-
There is a natural bijection of abelian groups (but not algebras)
3171

n:Hg = Hg, 11, x5 x1--~x§k_1x1 > Zg, o Zs, -

Then the fact that MZVs can be multiplied in two ways is reflected by

3 oY
D
MZV

Double shuffle relation
C(wy o« wo — 77(77_1(W1)H“7;(W2))), wy, wa € .




Linearly constrained zeta values (LCZ)

» Let (vq,---, vk) be a smooth close cone with ita (unique) primitive
generating set.
» For sq,---, 8¢ > 1, called the formal expression [v4]°' - - - [v,]% a

decorated smooth cone.
» Define the linearly constrained zeta value (LZV)

CO([vAl™ -+ [vi] ™)
oo [e.]
S o> !
= (@amy e @ me)® e (8 M+ )

my=1

if the sum is convergent, where v; = 2;21 aje;,1 <i < k. When
[v4] - - - [vk] is @ Chen cone [eq]---[e1 + - - - + €], then we have

Cl® - [val ™) = C(s1, -+ 8.



Subdivision of decorated closed cones

Let {(vj1, -, Vik) }; be a smooth subdivision of the smooth cone
(vi,--+, k). Gall >;[vi1] - - - [vik] an algebraic subdivision of

[va] - - [vil-

» Let [v4]® - - - [vk]® be a decorated smooth closed cone.

> Define g, ([v1]° -+ [Vil*) = 57, s(ei, v)[w]* -~ [y]+ - - [vi . For
u=>,ce;, define 6, = > Cide. Then

Va1 - [ = eyt 0w ([Vin] -+ [Vi)-

Call

Z(a - 1)t 1 (Sk—1)|6§: B 552_1([‘/”]'”["*])

an algebraic subdivision of [v{]®' - - - [v]%. Here v, --- , v/ is a dual
basis of vy, -, v.
Let D =), a;D; be an algebraic subdivision of a decorated smooth

cone D. Then
= Z aiCC(D/)

I
This generalizes the shuffle relation of MZVs.
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Relating open and closed subdivisions

» Let GL,(Z) denote the set of r x r unimodular matrices. Let
Me GL/(Z)and § :=(S1,...,5/) € ZL,. Let vy,--- v, and uy,--- , Uy
be the row and column vectors of M. The (decorated) cone pair
associated with M and s is the pair (C, D) consisting of the
decorated open cone C := Cy s = ((u1,-- -, ur)°,8) and the
decorated closed cone D := Dy, 5 = [v4]°" - - - [v,]*. We call the pair
convergent if the corresponding ¢-values ¢°(C) and ¢¢(D) converge.
» Let DTP denote the set of cone pairs (Cy 5, Dy 5) where M € O(Z)
and s € Z%,. Let
- p° : QDTP — QDE
and
p°: QDTP — QDME
denote the natural projections.
» For any cone pair (C, D) € DTP, we have

¢°(C) = ¢(D),

if either side makes sense.
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Double subdivision relation

» Let (C, D) be a convergent cone pair. Let {C;}; be an open
subdivision of the decorated open cone C and let }_; ¢;D; be a

subdivision of the decorated closed cone D. Also let DjT € DC be the
transpose cone of D/, that is, (D/-T, D)) is a cone pair. Then

> Gi—> ¢bf (1)
i j

lies in the kernel of ¢°. It is called a double subdivision relation.

» For any not necessarily convergent cone pair (C, D), let {C;} be a
subdivision of C and 3, &;D; a subdivision of D. If 3, C; — 3, aD/
is in QDC, then it is called an extended double subdivision relation.

» Hunch. The kernel of ¢? is the subspace Igps of QDC generated by
the extended double subdivision relations.
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Double subdivision relation

QDOey QDTP

QMmzVv

Qoemzv

13



Algebraic Birkhoff Decomposition

Algebraic Birkhoff Decomposition. Let H be a connected filtered
Hopf algebra, R = P(R) @ (id — P)(R) a commutative Rota-Baxter
algebra with an idempotent Rota-Baxter operator P. Any algebra

homomorphism ¢ : H — R has a unique decomposition into algebra
homomorphisms

b= o~ %4 ¢— : H — C+ P(R) (counter term)
R + ¢4 H — C+ (id — P)(R) (renormalization)
H formal rules formal expressions(= oo!)
renormalized values
¢ O+
e—0
R C+ (id - P)(R)
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» In QFT renormalization (Dim-Reg scheme), we take the triple
(Heg, Rrg, ¢rg) With

» Hopf algebra Hrg of Feynman graphs;

» Rrg = C[e ", ¢]] of Laurent series, with the pole part projection P;

» ¢rG : Hrg — R from dimensional regularized Feynman rule.

» Then Algebraic Birkhoff Decomposition gives

OFG = OFG,— * OFG,+

Feynman rules
Hrg y Feynman integrals(= oo!)

renormalized values
PEG

PFG,+

Cle1,¢]] Cllel]
15



Generalized Algebraic Birkhoff Decomposition

> LetC =D, C(" be a (co)differential connected coalgebra (so

C( = kJ) with counit ¢ : C — k and coderivations d,,0 € ¥ . Let A
be a differential algebra with derivations 9,,0 € . Let A= A1 & Ao
be a linear decomposition such that 14 € A; and

0,(A)CA, i=12 ocX.
Let P be the projection of Ato A along As. Denote
95(C,A):={¢0:C— A[¢(J) = 14,050 = ¢d5,0 € X}
Then any ¢ € §(C, A) has a unique decomposition

o =01 x i,
where p; € G(C, A),i = 1,2, satisfy (kere) C A; (hence
i € — kla+ Aj). If moreover Ay is a subalgebra of A then ¢;‘(_1)
lies in G(C, Ay).
16



Transverse cones

» ldentify Vi := R¥ with its dual through a fixed inner product (-, -).
» For a cone C, let lin(C) denote the subspace spanned by C.

» For any closed cone C and its face F, define the transverse cone
(Berline and Vergne) t(C, F) along F to be the projection of C to F,
where F1 = lin§(F) is the orthogonal completion of lin(F) in lin(C).

» For example, the transverse cone of (eq, e; + e») along (ey + &) is
(€1 — e2).
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Coproduct of cones

» We equip the linear space QCC of close cones with a coproduct

A:QEC — QEC®QECEC,AC:= Y HC,F)®F
and a counit F=e

6:@@(‘1%@,5(C):{ (1) g;%j

» With ee(™ := {C € ee|dim C = n},n > 0, we have a connected
coalgebra
CC = M=o,

18



Decorated closed cones

» Let QDC denote the space of decorated cones (C; s) for § € Z .
Extend A on QCC to QDC by derivation:

A(C;8) = (A0 6;)(C; §+ €)= (Djo A)(C; § + &)

» Then QDC is a connected coalgebra with derivations.
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Regularized CZVs

A meromorphic function f(Z) on CX is said to have linear poles at
zero if there are linear forms L;(Z) = >_jajzj, such that (I[; L;)f is
homomorphic at zero.
Let M(CK) be the algebra of such functions and let
M(C*®) = UM(CH).
We also have the summation map
S:QEC - M(C™®),S(C)(2) = Y e @M
neco k
By taking derivations, S extends to necinz

S: QDEE — M(C™),

~ L o (Z.7)
reconzk 1 k
This can be regarded as a regularization of
- 1
(G800 = >, s
reconzk 1 k

20



Algebraic Birkhoff Decomposition
There is a linear decomposition

M(C™) = M4(C®) @ M_(C™) = My(C®) & M(C),

where M (C>) = Hol(C*>) is the space of functions holomorphic at
0 and M_(C) is spanned by

T h(ty,--- ,¢m)
L? s L
where h € M (C*), 4y, ,€m,Lq,--- , L, independent linear forms

such that (¢;, L;) = 0,Vi, .
Together with the coproduct on QDeC, we obtain a (Birkhoff)
decomposition

s=8"ys,,
where S; : QDC — M;(C).
The value ¢(C; ) := S;"1(S;5)(0) is called the renormalized
conical zeta value of (C; s).
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Classical Euler-Maclaurin Formula

The (classical) Euler-Maclaurin formula relates the discrete sum
S(e) =Y e k= 1_;,8 for positive ¢ to the integral

o 1
I(e) = X dx = —
() /0 e X dx .

by means of the interpolator

=

82k 2141 0(c2K)  forall K e

r\)

wu(e) == S(e)—I(e) = =5+
k:1

which is holomorphic at ¢ = 0.

This formula becomes a special case of the Euler-Maclaurin formula
for cone, of Berline and Vergne, when the cone is taken to be [0, o).
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Euler-Maclaurin Formula for Cones

» For a smooth cone C, define

This gives rise to a map
I:QCC — M(C™).

» Euler-Maclaurin Formula (Berline-Vergne) There is a map
(interpolator)
wu: QCC — Hol(C™),

such that

S(C)= > ult(C.F)IF).

F face of C
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Birkhoff Factorization and Euler-Maclaurin

» Note that S; and S_ are unique such that S, (kere) € M, and
S_(kere) C M_ where € : QDCC — Q is the counit.

» Thus comparing with S = px/and /: QDCC — M_, we obtain
/ﬁ:Sjr(q), I=8_.

Further,
n = 7T+S.

24
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» Thank You!
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