Renormalization and Euler-Maclaurin Formula on Cones

Li GUO (joint work with Sylvie Paycha and Bin Zhang)

Rutgers University at Newark

Outline

- Conical zeta values and multiple zeta values;
- Double shuffle relations and double subdivision relations;
- Renormalization of conical zeta values;
- Euler-Maclaurin formula.

Cones

▶ A (closed polyhedral) cone in $\mathbb{R}_{>0}^k$ is defined to be the convex set

$$\langle v_1, \cdots, v_n \rangle := \mathbb{R}_{\geq 0} v_1 + \cdots + \mathbb{R}_{\geq 0} v_n, v_i \in \mathbb{R}_{\geq 0}^k, 1 \leq i \leq n.$$

▶ The interior of a cone $\langle v_1, \dots, v_n \rangle$ is an open (polyhedral) cone

$$\langle v_1, \cdots, v_n \rangle^o := \mathbb{R}_{>0} v_1 + \cdots + \mathbb{R}_{>0} v_n.$$

- ▶ The set $\{v_1, \dots, v_n\}$ is called the generating set or the spanning set of the cone. The dimension of a cone is the dimension of linear subspace generated by it.
- Let \mathcal{C}_k (resp. \mathfrak{OC}_k) denote the set of closed (resp. open cones) in \mathbb{R}^k , $k \geq 1$. For k = 0 we set $\mathcal{C}_0 = \{0\}$ (resp. $\mathfrak{OC}_0 = \{0\}$) by convention. Through the natural inclusions $\mathcal{C}_k \to \mathcal{C}_{k+1}$ (resp. $\mathfrak{OC}_k \to \mathfrak{OC}_{k+1}$) from the natural inclusion $\mathbb{R}^k \to \mathbb{R}^{k+1}$, we define $\mathcal{C} = \varinjlim \mathcal{C}_k$ (resp. $\mathfrak{OC} = \varinjlim \mathcal{OC}_k$).

- A simplicial cone is defined to be a cone spanned by linearly independent vectors. ▶ A rational cone is a cone spanned by vectors in $\mathbb{Z}^k \subset \mathbb{R}^k$.
- A smooth cone is a rational cone with a spanning set that is a part of a basis of $\mathbb{Z}^k \subset \mathbb{R}^k$. In this case, the spanning set is unique and is called the primary set of the cone.
- ► A cone is called strongly convex or pointed if it does not contain any linear subspace.
- ▶ A subdivision of a closed cone $C \in \mathcal{C}_k$ is a set $\{C_1, \dots, C_r\} \subseteq \mathcal{C}_k$ such that $C = \bigcup_{i=1}^r C_i, C_1, \cdots, C_r$ have the same dimension C and intersect along their faces. The faces of the relative interior give an open subdivision of C^o :

$$egin{aligned} \langle e_1,e_2
angle = \langle e_1,e_1+e_2
angle \sqcup \langle e_1+e_2,e_e
angle \ \\ \Rightarrow \langle e_1,e_2
angle^o = \langle e_1,e_1+e_2
angle^o \sqcup \langle e_1+e_2,e_e
angle^o \sqcup \langle e_1+e_2
angle^o. \end{aligned}$$

▶ For $\vec{x} = (x_1, \dots, x_k)$ and $\vec{y} = (y_1, \dots, y_k)$ in \mathbb{R}^k , let (\vec{x}, \vec{y}) denote the inner product $x_1y_1 + \cdots + x_ky_k$. Through this inner product, \mathbb{R}^k is identified with its own dual space $(\mathbb{R}^k)^*$.

Conical zeta values

▶ Let C be a smooth cone. The conical zeta function of C is

$$\zeta(C; \vec{s}) := \sum_{(n_1, \cdots, n_k) \in C^o \cap \mathbb{Z}^k} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}}, \vec{s} \in \mathbb{C}^k,$$

if the sum converges. When s_i , $1 \le i \le k$, are integers, $\zeta(\vec{s})$ is called a conical zeta value (CZV). Convention: $0^s = 1$ for any s. Hence $\zeta(\vec{s})$ does not depend on the choice of k.

- ▶ If $s_i \ge 2, 1 \le i \le k$, then $\zeta(C; \vec{s})$ converges.
- ▶ If $\{C_i\}_i$ is an open cone subdivision of C, then

$$\zeta(C; \vec{s}) = \sum_i \zeta(C_i; \vec{s}).$$

► The cone subdivision

$$\langle e_1, e_2 \rangle^o = \langle e_1, e_1 + e_2 \rangle^o \sqcup \langle e_1 + e_2, e_2 \rangle^o \sqcup \langle e_1 + e_2 \rangle^o$$

gives $\zeta(\langle e_1, e_2 \rangle^o; (s_1, s_2)) = \zeta(\langle e_1, e_1 + e_2 \rangle^o; (s_1, s_2))$

Chen cones and multiple zeta values

▶ A Chen cone of dimension *k* is a cone

$$\mathcal{C}_{k,\sigma} := \langle \pmb{e}_{\sigma(1)}, \pmb{e}_{\sigma(1)} + \pmb{e}_{\sigma(2)}, \cdots, \pmb{e}_{\sigma(1)} + \cdots + \pmb{e}_{\sigma(k)} \rangle,$$

where $\sigma \in S_k$. Let C_k denote the standard Chen cone spanned by $\{e_1, \dots, e_k\}$.

▶ Then $\zeta(C_{k,\sigma}; s_1, \dots, s_k) = \zeta(s_{\sigma(1)}, \dots, s_{\sigma(k)}),$

$$\zeta(C_{k,\mathrm{id}};s_1,\cdots,s_k)=\zeta(s_1,\cdots,s_k).$$

- ▶ The stuffle product of two MZVs $\zeta(r_1, \dots, r_k)$ and $\zeta(s_1, \dots, s_\ell)$ is recovered by the subdivision of the cone $C_k \times C_\ell$ (direct product) into Chen cones.
- For example, the open cone subdivision relation

$$\zeta(\langle e_1, e_2 \rangle^o; (s_1, s_2)) = \zeta(\langle e_1, e_1 + e_2 \rangle^o; (s_1, s_2)) + \zeta(\langle e_1 + e_2, e_2 \rangle^o; (s_1, s_2) + \zeta(\langle e_1 + e_2 \rangle^o; (s_1, s_2))$$

gives the stuffle relation

$$\zeta(s_1)\zeta(s_2) = \zeta(s_1, s_2) + \zeta(s_2, s_1) + \zeta(s_1 + s_2).$$

Multiple zeta values

► The multiple zeta value algebra is

$$MZV := \mathbb{Q}\{\zeta(s_1, \cdots, s_k) | s_i \ge 1, s_1 \ge 1\}.$$

▶ The quasi-shuffle algebra \mathcal{H}^* has the underlying vector space

$$\mathbb{Q}\langle z_s \, | \, s \geq 1 \rangle$$

with the quasi-shuffle product. It contains the subalgebra

$$\mathcal{H}_0^* := \mathbb{Q}.1 \oplus \left(\bigoplus_{s_1 > 2} \mathbb{Q} z_{s_1} \cdots z_{s_k} \right) \subseteq \mathcal{H}^*.$$

The stuffle relation of MZVs is encoded in the algebra homomorphism

$$\zeta^*: \mathcal{H}_0^* \longrightarrow \mathbf{MZV}, \quad z_{s_1} \cdots z_{s_k} \mapsto \zeta(s_1, \cdots, s_k).$$

Double shuffle relation

► The shuffle algebra \mathcal{H}^{III} has the underlying vector space $\mathbb{Q}\langle x_0, x_1 \rangle$ equipped with the shuffle product of words. It contains the subalgebra $\mathcal{H}_0^{\text{III}} := \mathbb{Q}.1 \bigoplus x_0 \mathcal{H}^{\text{III}} x_1$.

The shuffle relation of the MZVs is encoded in the algebra homomorphism

$$\zeta^{\mathrm{III}}:\mathfrak{H}_0^{\mathrm{III}} o \mathbf{MZV}, \quad x_0^{s_1-1}x_1\cdots x_0^{s_k-1}x_1 \mapsto \zeta(s_1,\cdots,s_k).$$

► There is a natural bijection of abelian groups (but *not* algebras)

$$\eta: \mathcal{H}_0^{\mathrm{III}} \to \mathcal{H}_0^*, \quad 1 \leftrightarrow 1, \ X_0^{s_1-1} X_1 \cdots X_0^{s_k-1} X_1 \leftrightarrow Z_{s_1} \cdots Z_{s_k}.$$

Then the fact that MZVs can be multiplied in two ways is reflected by

$$\mathcal{H}_0^* \stackrel{\eta}{\longleftarrow} \mathcal{H}_0^{\mathrm{III}}$$

Double shuffle relation

$$\zeta^* (w_1 * w_2 - \eta(\eta^{-1}(w_1) \coprod \eta^{-1}(w_2))), \quad w_1, w_2 \in \mathcal{H}_0^*.$$

Linearly constrained zeta values (LCZ)

- Let $\langle v_1, \dots, v_k \rangle$ be a smooth close cone with ita (unique) primitive generating set.
- ▶ For $s_1, \dots, s_k \ge 1$, called the formal expression $[v_1]^{s_1} \cdots [v_k]^{s_k}$ a decorated smooth cone.
- Define the linearly constrained zeta value (LZV)

$$\zeta^{c}([v_{1}]^{s_{1}}\cdots[v_{k}]^{s_{k}})$$

$$:=\sum_{m_{1}=1}^{\infty}\cdots\sum_{m_{r}=1}^{\infty}\frac{1}{(a_{11}m_{1}+\cdots+a_{1r}m_{r})^{s_{1}}\cdots(a_{k1}m_{1}+\cdots+a_{kr}m_{r})^{s_{k}}}$$

if the sum is convergent, where $v_i = \sum_{j=1}^r a_{ij}e_j$, $1 \le i \le k$. When $[v_1] \cdots [v_k]$ is a Chen cone $[e_1] \cdots [e_1 + \cdots + e_k]$, then we have

$$\zeta^{c}([v_1]^{s_1}\cdots[v_k]^{s_k})=\zeta(s_1,\cdots,s_k).$$

Subdivision of decorated closed cones

Let $\{\langle v_{i1}, \dots, v_{ik} \rangle\}_i$ be a smooth subdivision of the smooth cone $\langle v_1, \dots, v_k \rangle$. Call $\sum_i [v_{i1}] \cdots [v_{ik}]$ an algebraic subdivision of $[v_1] \cdots [v_k]$.

Let $[v_1]^{s_1} \cdots [v_k]^{s_k}$ be a decorated smooth closed cone.

▶ Define $\delta_{e_i}([v_1]^{s_1}\cdots [v_k]^{s_k}) = \sum_j s_j(e_i, v_j)[v_1]^{s_1}\cdots [v_j]^{s_j+1}\cdots [v_k]^{s_k}$. For $u = \sum_i c_i e_i$, define $\delta_u = \sum_i c_i \delta_{e_i}$. Then $[v_1]^{s_1}\cdots [v_k]^{s_k} = \frac{1}{(s_1-1)!\cdots (s_k-1)!}\delta_{V_*^*}^{s_1-1}\cdots \delta_{V_*^*}^{s_k-1}([v_{i1}]\cdots [v_{ik}])$.

 $\sum_{i} \frac{1}{(s_{1}-1)! \cdots (s_{k}-1)!} \delta_{v_{1}^{*}}^{s_{1}-1} \cdots \delta_{v_{k}^{*}}^{s_{k}-1} ([v_{i1}] \cdots [v_{ik}])$

an algebraic subdivision of $[v_1]^{s_1} \cdots [v_k]^{s_k}$. Here v_1^*, \cdots, v_k^* is a dual basis of v_1, \cdots, v_k .

Let $D = \sum_i a_i D_i$ be an algebraic subdivision of a decorated smooth cone D. Then

$$\zeta^c(D) = \sum_i a_i \zeta^c(D_i).$$

Call

This generalizes the shuffle relation of MZVs.

Relating open and closed subdivisions

Let $GL_r(\mathbb{Z})$ denote the set of $r \times r$ unimodular matrices. Let $M \in GL_r(\mathbb{Z})$ and $\vec{s} := (s_1, \dots, s_r) \in \mathbb{Z}_{\geq 0}^r$. Let v_1, \dots, v_r and u_1, \dots, u_r be the row and column vectors of M. The (decorated) cone pair associated with M and \vec{s} is the pair (C, D) consisting of the decorated open cone $C := C_{M,\vec{s}} = (\langle u_1, \dots, u_r \rangle^o, \vec{s})$ and the decorated closed cone $D := D_{M,\vec{s}} = [v_1]^{s_1} \cdots [v_r]^{s_r}$. We call the pair convergent if the corresponding ζ -values $\zeta^0(C)$ and $\zeta^c(D)$ converge.

Let \mathfrak{DTP} denote the set of cone pairs $(C_{M,\vec{s}},D_{M,\vec{s}})$ where $M\in O(\mathbb{Z})$ and $\vec{s}\in\mathbb{Z}_{>0}^r$. Let

$$p^o: \mathbb{QDTP} \to \mathbb{QDC}$$

and

$$p^c: \mathbb{QDTP} \to \mathbb{QDMC}$$

denote the natural projections.

▶ For any cone pair $(C, D) \in DTP$, we have

$$\zeta^o(C) = \zeta^c(D),$$

if either side makes sense.

Double subdivision relation

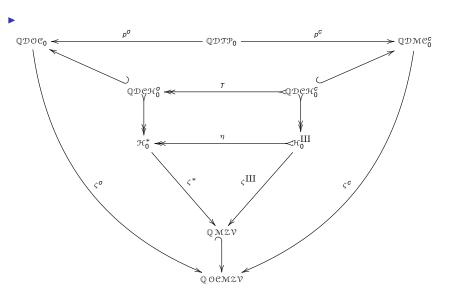
Let (C, D) be a convergent cone pair. Let $\{C_i\}_i$ be an open subdivision of the decorated open cone C and let $\sum_j c_j D_j$ be a subdivision of the decorated closed cone D. Also let $D_j^T \in \mathcal{DC}$ be the transpose cone of D^j , that is, (D_i^T, D_j) is a cone pair. Then

$$\sum_{i} C_i - \sum_{j} c_j D_j^T \tag{1}$$

lies in the kernel of ζ^o . It is called a double subdivision relation.

- ▶ For any not necessarily convergent cone pair (C, D), let $\{C_i\}$ be a subdivision of C and $\sum_j a_j D_j$ a subdivision of D. If $\sum_i C_i \sum_j a_j D_j^T$ is in \mathbb{QDC} , then it is called an extended double subdivision relation.
- ▶ Hunch. The kernel of ζ^o is the subspace I_{EDS} of \mathbb{QDC} generated by the extended double subdivision relations.

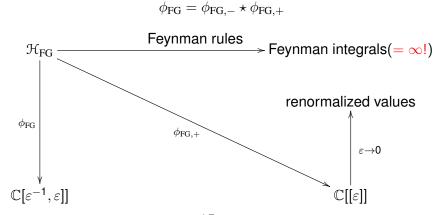
Double subdivision relation



Algebraic Birkhoff Decomposition

▶ Algebraic Birkhoff Decomposition. Let $\mathcal H$ be a connected filtered Hopf algebra, $R=P(R)\oplus (\mathrm{id}-P)(R)$ a commutative Rota-Baxter algebra with an idempotent Rota-Baxter operator P. Any algebra homomorphism $\phi:\mathcal H\to R$ has a unique decomposition into algebra homomorphisms

- ▶ In QFT renormalization (Dim-Reg scheme), we take the triple $(\mathcal{H}_{FG}, \textit{R}_{FG}, \phi_{FG})$ with
- ▶ Hopf algebra \mathcal{H}_{FG} of Feynman graphs;
- ▶ $R_{\text{FG}} = \mathbb{C}[\varepsilon^{-1}, \varepsilon]$] of Laurent series, with the pole part projection P;
- $\phi_{\mathrm{FG}}:\mathcal{H}_{\mathrm{FG}}\to R_{\mathrm{FG}}$ from dimensional regularized Feynman rule.
- ► Then Algebraic Birkhoff Decomposition gives



Generalized Algebraic Birkhoff Decomposition

Let $\mathbf{C} = \bigoplus_{n \geq 0} \mathbf{C}^{(n)}$ be a (co)differential connected coalgebra (so $\mathbf{C}^{(0)} = \mathbf{k}J$) with counit $\varepsilon : \mathbf{C} \to \mathbf{k}$ and coderivations $\delta_{\sigma}, \sigma \in \Sigma$. Let A be a differential algebra with derivations $\partial_{\sigma}, \sigma \in \Sigma$. Let $A = A_1 \oplus A_2$ be a linear decomposition such that $1_A \in A_1$ and

$$\partial_{\sigma}(A_i) \subseteq A_i, \quad i = 1, 2, \quad \sigma \in \Sigma.$$

Let P be the projection of A to A_1 along A_2 . Denote

$$\mathfrak{G}(\mathbf{C}, \mathbf{A}) := \{ \phi : \mathbf{C} \to \mathbf{A} \, | \, \phi(\mathbf{J}) = \mathbf{1}_{\mathbf{A}}, \, \partial_{\sigma} \phi = \phi \delta_{\sigma}, \, \sigma \in \Sigma \}.$$

Then any $\phi \in \mathfrak{G}(\mathbf{C}, A)$ has a unique decomposition

$$\varphi = \varphi_1^{*(-1)} * \varphi_2,$$

where $\varphi_i \in \mathcal{G}(\mathbf{C}, A)$, i = 1, 2, satisfy $(\ker \varepsilon) \subseteq A_i$ (hence $\varphi_i : \mathbf{C} \to \mathbf{k} \mathbf{1}_A + A_i$). If moreover A_1 is a subalgebra of A then $\phi_1^{*(-1)}$ lies in $\mathcal{G}(\mathbf{C}, A_1)$.

Transverse cones

- ▶ Identify $V_k := \mathbb{R}^k$ with its dual through a fixed inner product (\cdot, \cdot) .
- ▶ For a cone C, let lin(C) denote the subspace spanned by C.
- ▶ For any closed cone C and its face F, define the transverse cone (Berline and Vergne) t(C, F) along F to be the projection of C to F^{\perp} , where $F^{\perp} = \lim_{C} (F)$ is the orthogonal completion of $\lim_{C} (F)$ in $\lim_{C} (C)$.
- ▶ For example, the transverse cone of $\langle e_1, e_1 + e_2 \rangle$ along $\langle e_1 + e_2 \rangle$ is $\langle e_1 e_2 \rangle$.

Coproduct of cones

ightharpoonup We equip the linear space \mathbb{QCC} of close cones with a coproduct

$$\Delta: \mathbb{Q}$$
CC $ightarrow \mathbb{Q}$ CC $\otimes \mathbb{Q}$ CC, $\Delta C:=\sum_{F\preceq C} t(C,F)\otimes F$

and a counit

$$\varepsilon: \mathbb{QCC} \to \mathbb{Q}, \varepsilon(C) = \left\{ egin{array}{ll} 1, & C = \{0\}, \ 0, & C
eq \{0\}. \end{array}
ight.$$

▶ With $\mathbb{CC}^{(n)} := \{C \in \mathbb{CC} | \dim C = n\}, n \ge 0$, we have a connected coalgebra

$$\mathcal{CC} = \bigoplus_{n>0} \mathcal{CC}^{(n)}$$
.

Decorated closed cones

▶ Let \mathbb{QDC} denote the space of decorated cones $(C; \vec{s})$ for $\vec{s} \in \mathbb{Z}_{\leq 0}$. Extend Δ on \mathbb{QCC} to \mathbb{QDC} by derivation:

$$\Delta(C; \vec{s}) = (\Delta \circ \delta_i)(C; \vec{s} + e_i) = (D_i \circ \Delta)(C; \vec{s} + e_i).$$

▶ Then QDC is a connected coalgebra with derivations.

Regularized CZVs

A meromorphic function $f(\vec{z})$ on \mathbb{C}^k is said to have linear poles at zero if there are linear forms $L_i(\vec{z}) = \sum_j a_{ij} z_j$, such that $(\prod_i L_i) f$ is homomorphic at zero.

 $\vec{n} \in C^{0} \cap \mathbb{Z}^{k}$

Let $\mathcal{M}(\mathbb{C}^k)$ be the algebra of such functions and let $\mathcal{M}(\mathbb{C}^\infty) = \bigcup_k \mathcal{M}(\mathbb{C}^k)$.

We also have the summation map

$$\mathcal{S}: \mathbb{QCC}
ightarrow \mathbb{M}(\mathbb{C}^{\infty}), \mathcal{S}(\mathcal{C})(ec{z}) := \sum_{} e^{-(ec{z},ec{n})}.$$

$$S:\mathbb{Q}\mathbb{D}\mathbb{C}\mathbb{C} o \mathbb{M}(\mathbb{C}^\infty),$$

$$\mathcal{S}(\mathit{C}; ec{s}) := \zeta(\mathit{C}; ec{s}; ec{z}) := \sum_{ec{n} \in \mathit{C}^{o} \cap \mathbb{Z}^{k}} rac{e^{-(ec{z}, ec{n})}}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}.$$

This can be regarded as a regularization of $\zeta(C; \vec{s}; 0) = \sum_{\mathbf{r}} \frac{1}{\mathbf{r}^{s_1}}$

$$\zeta(C; \vec{s}; 0) = \sum_{\vec{n} \in C^{\circ} \cap \mathbb{Z}^k} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}}.$$
20

Algebraic Birkhoff Decomposition

There is a linear decomposition

$$\mathcal{M}(\mathbb{C}^{\infty}) = \mathcal{M}_{+}(\mathbb{C}^{\infty}) \oplus \mathcal{M}_{-}(\mathbb{C}^{\infty}) = \mathcal{M}_{1}(\mathbb{C}^{\infty}) \oplus \mathcal{M}_{2}(\mathbb{C}^{\infty}),$$

where $\mathfrak{M}_+(\mathbb{C}^\infty)=Hol(\mathbb{C}^\infty)$ is the space of functions holomorphic at 0 and $\mathfrak{M}_-(\mathbb{C}^\infty)$ is spanned by

$$\sum \frac{h(\ell_1,\cdots,\ell_m)}{L_1^{r_1}\cdots L_n^{r_n}},$$

where $h \in \mathcal{M}_+(\mathbb{C}^{\infty})$, $\ell_1, \dots, \ell_m, L_1, \dots, L_n$ independent linear forms

such that $(\ell_i, L_j) = 0, \forall i, j$.

Together with the coproduct on \mathbb{QDC} , we obtain a (Birkhoff)

decomposition $S = S_1^{*(-1)} \star S_2$,

where
$$S_i: \mathbb{QDC} \longrightarrow \mathcal{M}_i(\mathbb{C}^{\infty})$$
.

► The value $\zeta(C; \vec{s}) := S_1^{*(-1)}(S; \vec{s})(0)$ is called the renormalized conical zeta value of $(C; \vec{s})$.

Classical Euler-Maclaurin Formula

▶ The (classical) Euler-Maclaurin formula relates the discrete sum $S(\varepsilon) := \sum_{k=0}^{\infty} e^{-\varepsilon k} = \frac{1}{1-e^{-\varepsilon}}$ for positive ε to the integral

$$I(\varepsilon) := \int_0^\infty e^{-\varepsilon x} \, dx = \frac{1}{\varepsilon}$$

by means of the interpolator

$$\mu(\varepsilon) := S(\varepsilon) - I(\varepsilon) = S(\varepsilon) - \frac{1}{\varepsilon} = \frac{1}{2} + \sum_{l=1}^K \frac{B_{2k}}{(2k)!} \varepsilon^{2k-1} + o(\varepsilon^{2K}) \quad \text{ for all } K \in$$

which is holomorphic at $\varepsilon = 0$.

▶ This formula becomes a special case of the Euler-Maclaurin formula for cone, of Berline and Vergne, when the cone is taken to be $[0, \infty)$.

Euler-Maclaurin Formula for Cones

► For a smooth cone C, define

$$I(C)(\vec{z}) := \int_C e^{-(\vec{x},\vec{z})} d\vec{x}.$$

This gives rise to a map

$$I: \mathbb{QCC} \to \mathcal{M}(\mathbb{C}^{\infty}).$$

► Euler-Maclaurin Formula (Berline-Vergne) There is a map (interpolator)

$$\mu: \mathbb{QCC} \to Hol(\mathbb{C}^{\infty}),$$

such that

$$S(C) = \sum_{F \text{ formal } C} \mu(t(C, F)) I(F).$$

Birkhoff Factorization and Euler-Maclaurin

- Note that S_+ and S_- are unique such that $S_+(\ker \varepsilon) \subseteq \mathcal{M}_+$ and $S_-(\ker \varepsilon) \subseteq \mathcal{M}_-$ where $\varepsilon : \mathbb{QDCC} \to \mathbb{Q}$ is the counit.
- ▶ Thus comparing with $S = \mu \star I$ and $I : \mathbb{QDCC} \to \mathcal{M}_-$, we obtain

$$\mu = S_{+}^{\star(-1)}, \qquad I = S_{-}.$$

Further,

$$\mu = \pi_+ \mathcal{S}.$$

References

- N. Berline and M. Vergne, Euler-Maclaurin formula for polytopes, Mosc. Math. J. 7 (2007) 355-386.
- ▶ N. Berline and M. Vergne, Local asymptotic Euler-Maclaurin expansion for Riemann sums over a semi-rational polyhedron, arXiv:1502.01671v1.
- L. G., S. Paycha and B. Zhang, Conical zeta values and their double subdivision relations, *Adv. Math.* **252** (2014) 343-381.
- ► L. G., S. Paycha and B. Zhang, Counting an infinite number of points: a testing ground for renormalization methods, In: Geometric, algebraic and topological methods for quantum field theory 2013.
- ► L. G., S. Paycha and B. Zhang, Decompositions and residue of meromorphic functions with linear poles in the light of the geometry of cones, arXiv:1501.00426.
- L. G., S. Paycha and B. Zhang, Algebraic Birkhoff Factorization and the Euler-Maclaurin Formula on cones, arXiv:1306.3420 (revised December 2015).
- L. G., S. Paycha and B. Zhang, Renormalized conical zeta values, preprint, 2016.

25

▶ Thank You!