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e Taylor expansion gives formal diffeomorphisms, ok for perturbations.
They form proalgebraic groups, represented by commutative Hopf
algebras on infinitely many generators.

e In pQFT, ren. Hopf algebras do represent groups of formal series on
the coupling constants [Connes-Kreimer 1998, Pinter 2001, Keller 2010]

e Renormalization Hopf algebras:
- are right-sided combinatorial Hopf alg [Loday-Ronco 2008,
Brouder-AF-Menous 2011]
- are all related to operads and produce P-expanded series [Chapoton
2003, van der Laan 2003, AF 2008]
- admit non-commutative lifts [Brouder-AF 2000, 2006, Foissy 2001]

e Puzzling situation:

- Series with coefficients in a non-comm. algebra A do appear in
physics, but their commutative representative Hopf algebra is not
functorial in A cf. [Van Suijlekom 2007] for QED.

- These series are related to some non-commutative Hopf algebras which
are functorial in A.
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How are series related to non-commutative Hopf algebras?

e Toy model: the set of formal diffeomorphisms in one variable

Diff(A) = {a()\) =+ Z an A" | a, € A}
n=1

with composition law (ao b)(A) = a(b())) and unit e(A) = X, when A
is a unital associative algebra, but not commutative.
Examples of non-commutative coefficients A:

M4(C)  matrix algebra

cf. QED renormalization [Brouder-AF-Krattenthaler 2001, 2006]
T(E) tensor algebra

cf. renormalization functor [Brouder-Schmitt 2002]
and work in progress on bundles with Brouder and Dang

L(H) linear operators on a Hilbert space

e Two problems:
1) define (pro)algebraic groups on non-commutative algebras
2) modify because Diff(A) is not a group!
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Lie and (pro)algebraic groups on commutative algebras

Group Function algebra
G Lie group _
or (pro)algebraic representations R[G] = O(6)

_— >

Hopf com
G(A) = I}&IHT}(R[G],A) dense in C*(G)

-
: algebraic group
convolution group

group-like
infinitesimal elements Hopf algebra
structure distributions duality
supported at e
Lie algebra Enveloping algebra
g = T.G = PrimUg algebra ext. Ug =~ R[G]*
. Hopf cocom (not com)
gA=g®A primitives
] Uga = Ug® A
uAs — Lie: A— A,
[a, b] = ab — ba adjoint functors | Hom(g, Ac) = Hom(Ug, A)
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Denote: multiplication m, unit u, coproduct A, counit € and antipode S.

e The set Hcpm(H, A)  forms a group with

convolution axf=ma (a®pP) Ay
unit € = Up€cH
inverse al=a Sy

e Let G be a (pro)algebraic group represented by the Hopf algebra R[G],
and let x1, xp, ... be generators of R[G] (coordinate functions on G).
Then the isomorphism G(A) = Hcom(R[G],A) is given by

uCom
g—ag: R[G] > A
Xp —> ag(Xn) = Xn(g)'

e Let g be a Lie algebra with bracket [ , ]. Then ga = g® A is also a Lie
algebra with bracket

[x®a,y®b] = [x,y] ®ab,
and Uga = Ug® A.
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e Even if H is a Hopf algebra, the convolution a8 = ma (a® 8) Ay is
not well defined on H(E\m(H, A), because it is not an algebra morphism.

e Solve requiring a modified coproduct A® : H - H® H, where
A® B is the free product algebra with concatenation
Aa®b®A @D ®--- instead of (aa’---)® (bb'---) asin A®Q B.
Then my : A® A — A induces an algebra morphism mA A®A— A,

can define the convolution
axfl= m% (a® B) A,C’_?

and get a group [Zhang 1991, Bergman-Hausknecht 1996].

e If (H,A®) is a modified Hopf algebra, then the natural projection
A=7A®:H > H®H— H® H defines a usual Hopf algebra!

This explains how invertible series G(A) = {a(/\) =1+ Za,,)\”}

with  (ab)(\) = a(A\)b(\)  still form a proalgebraic group,
represented by the algebra of non commutative symmetric functions

H =K{xy, xa, ..., A®(x,) me®x,, m-
[Brouder-AF-Krattenthaler 2006, cf. AF-Manchon 2014]
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Lie algebras with non-commutative coefficients

Let g be a Lie algebra and A a unital associative algebra.

e On the vector space g ® A the simple law  [x® a,y ® b] = [x,y| ® ab
does not define a Lie bracket (Jacobi fails).

e In fact it is an open problem to define a Lie bracket on g ® A!

Only known example is  slp ® J where J is a Jordan algebra
(commutative but not associative), but does not fit.

e Let us turn the problem: what is the infinitesimal structure of a
(pro)algebraic group G(A) if A is not commutative?

Hints come from good triples of operads [Loday 2008], if we apply
functors to non-commutative algebras get the triple (As, As, Vect):
ga is just a vector space!




(Pro)algebraic groups on non-commutative algebras

Group Function algebra
G (pro)algebraic R[G]
reps ? A®_Hopf
N EEEEE——— -Hopf as, coas
G(A) = %gg(R[G], A) (not com)

convolution group a‘lgebraic group

infinitesimal Hopf-type
structure duality
Vector space Enveloping algebra
ga (pro)algebraic M Ug =~ R[G]*

-—

~ PrimUga primitives ®-Hopf as, coas
(not cocom)
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e If Ais a unital associative algebra (not commutative), the set
Diff(A) = {a(A) =AY a A e A}

does not form a group because the composition is not associative:

(ao (bo c)) (\) — ((ao b) o c) () = (arhicr — arciby) M + O(A%) # 0.

e However the Faa di Bruno Hopf algebra Hpgp = R[Diff] lifts up to a

non commutative Hopf algebra HpGs = K(x1, x2,...) with
n

Fpm) = Y xm®@ D XXk, (0 =1),
m=0 (k)
where (k) = (ko, ki, ..., km) with k; >0and kg + k1 + -+ kn=n—m
[Brouder-AF-Krattenthaler 2006].

e The coproduct ARG can be modified into an algebra morphism
Afyp - Hige — Hide ® Higs,

then it represents Diff (A) and of course it loses coassociativity!



Smooth loops

e Aloop is a set @ with a multiplication and a unit e, such that the
operators of left and right translation

Li(x)=a-x and R:i(x) =x-a

are invertible, but L;1# L, 1, R;1#R,1 because a—! does not exist!
Call left and right division: a\b= L;!(b) and b/a= R;(b).



Smooth loops

e Aloop is a set @ with a multiplication and a unit e, such that the

operators of left and right translation

Li(x)=a-x and

R:i(x) =x-a

are invertible, but L;1# L, 1, R;1#R,1 because a—! does not exist!
Call left and right division: a\b= L;!(b) and b/a= R;(b).

e Smooth loops were introduced by
Ruth Moufang [1935], later related to
Maltsev algebras [1955] and to alge-
braic webs [Blaschke 1955].

e Any Lie group is a smooth loop:
a/lb=a-b7! and a\b=al-b.

e The smallest loop which is not a group
is the sphere S, which can be seen as
the set of unit octonions in Q.

Magma
divisibility associativity
Quasigroup Semigroup
identity identity
Loop Monoid
associativity invertibility

Group



Loops, homogeneous spaces and flat connections

e A homogeneous space is a (local) loop with the residual structure
of the group action. That is, if M = G/H is a homogeneous space for
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(local) section around any point e € M, then

x-y=p(i(x)ily)), xyeM
is a (local) loop multiplication [Sabinin 1972].
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Loops, homogeneous spaces and flat connections

e A homogeneous space is a (local) loop with the residual structure
of the group action. That is, if M = G/H is a homogeneous space for
a Lie group G, p: G — M is the projectionand i : Uc M — G a
(local) section around any point e € M, then
x-y=p(i(x)i(y), xyeM
is a (local) loop multiplication [Sabinin 1972].
¢ A manifold with flat connection is a “geodesic” (local) loop.
- If Q is a smooth loop, define a parallel transport P2 : T,Q — T,Q

as the differential of the map x— b-(a\x). The tangent bundle is
then trivialized, and get a flat connection V [Sabinin 1986].

N.B. For Lie groups, same result by Elie Cartan [1904, 1927],

moreover torsion has zero covariant derivative!

- If M is a smoot manifold with a flat connection V, around any e e M
can define a (local) loop by [Sabinin 1977, 1981]

ase b= exp, (P2 (loge(b)).
Moreover it is right-alternative: (ae bP) e b7 = 30 bPT9.

If Q is right-alternative then - = e, otherwise a- b = a e ®(a, b).



Infinitesimal structure of loops: Sabinin algebras

e A Sabinin algebra (ex ®-hyperalgebra) is a vector space q with

iy )i Ta®qgAag—q
d:S5q®Sq—1q

such that, if u,v e Tq and x, y,z,z' € q are chosen in a given basis,

lulz, 2 vix,y) + Z<U(1)<U(2)? z,Z)viy,x) =0
Z (<uz; X, y)+ Z<U(1): Uy X, y), Z>) =0

(x,y,2)

where Au =} u(1) ® () is the unshuffle coproduct on Tq (cocom).



Infinitesimal structure of loops: Sabinin algebras

e A Sabinin algebra (ex ®-hyperalgebra) is a vector space q with

iy )i Ta®qgAag—q
d:S5q®Sq—1q

such that, if u,v e Tq and x, y,z,z' € q are chosen in a given basis,

lulz, 2 vix,y) + Z<U(1)<U(2)? z,Z)viy,x) =0
Z (<uz; X, y)+ Z<U(1): Uy X, y), Z>) =0

(x.y,2)
where Au =} u(1) ® () is the unshuffle coproduct on Tq (cocom).

e Geometrical explanation: if ¢ = T.Q and V is the flat connection
on Q, can choose a basis of V-constant vector fields X, Y, Z, ... so that
VxY =0and R(X,Y)Z =0, and set

(24 s Zi XYY =V g V7 T(X,Y)

(¢ omitted because more complicated). Then
Sabinin identities = Bianchi identities relating torsion and curvature.



Smooth and (pro)algebraic loops on commutative algebras

Loop Function algebra
Q® smooth R[Q] = O(Q)
i reps ?
or (pro)algebraic alg: as + com
Q(A) ~ Hcom(R[Q],A) coalg: mag + codivisions
convolution group algebraic loop
infinitesimal Hopf-type
structure duality
Sabinin algebra Enveloping algebra
g=T.Q=X,(Q) | _2lsebraext Ug = R[G]*
< PrimUq - alg: mag + divisons
primitives

uMag — Sab: A Ag coalg: cocom + coas

Shestakov-Umirbaev 2002] | «—— | Ho ,As) = Hom(Uq, A
[ ] adjoint functors Sain(q s) uMeIé'l( % A)




Loop of formal diffeomorphisms

Standard way to produce loops: invertibles in magmatic algebras or formal loops.
Here, non standard one: modify coefficients [AF-Shestakov]

¢ Heisenberg loop: the set of Heisenberg matrices (or any triangular)

HL3(A)={( )|a,b,c6A}

is a loop with matrix product even when A is a non-associative algebra
(e.g. octonions). It is a group if A associative (e.g. quaternions).
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Standard way to produce loops: invertibles in magmatic algebras or formal loops.
Here, non standard one: modify coefficients [AF-Shestakov]

¢ Heisenberg loop: the set of Heisenberg matrices (or any triangular)

HL3(A)={( )|a,b,ceA}

is a loop with matrix product even when A is a non-associative algebra
(e.g. octonions). It is a group if A associative (e.g. quaternions).

(=N g
[N 1)
= o0

e Loop of formal diffeomorphisms: the set of formal diffeomorphism

Diff(A) = {a = Z an A" ag =1,a, € A},

with composition , 0

aob:Z Z Z ambko...bkm)\n+l

n=0 m=0 ko+--+kpn=n—m

is a loop if A is a unital associative algebra. It is right alternative and
therefore power associative. It is a group if A is commutative.

e Loop of P-expanded series: the same holds for series expanded over
any operad P with P(0) = 0 and P(1) = {id} and coeff in A.
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a/b=aob™! but bla#bloal

e In the series b\a, the coefficient
(b\a)s = a3 — (2b1ay + byaj) + (5ba1 + byaiby — 3boay)
— (563 — 2byby — 3boby + bs)
contains the term b;a; by which can not be represented in the form
f(b) ® g(a) € HpSp ® HRSy, while clearly belongs to HpSg ® HpSg-

This justifies the need to replace ® by & in the definition of the
coproduct of R[Diff (A)].

M he diff
o Moreover, the difference (a/b — h\a)s — bfal _ byaghy

shows why the non-comm. Faa di Bruno Hopf algebra exists:
ALy recovered from A%@dB by composing with the projection
Hgas ® Hpas — Heas ® Hrgs

which identifies bya;b; and b?a;. Then a/b= b\aand b~!is a
two-sided inverse.



(Pro)algebraic loops on non-commutative algebras [aF-Is]

Loop Function algebra
Q (pro)algebraic R[Q]
reps ? |
EE— alg: as
A) =~ Hom(R A
Q(A) = Hom(R[Q). A o
convolution loop mp mag + codivisions
infinitesimal Hopf-type
structure duality
Unknown Enveloping algebra
related to Brace M Ug =~ R[G]*
-~ alg:
and to primitives g ®

mag + divisons

Shestakov-Umirbaev
coalg: coas

p-operations




THANK YOU!



