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Motivation: from renormalization Hopf algebras to series
‚ Diffeomorphism groups fix structure in geometry and physics.

‚ Taylor expansion gives formal diffeomorphisms, ok for perturbations.
They form proalgebraic groups, represented by commutative Hopf
algebras on infinitely many generators.

‚ In pQFT, ren. Hopf algebras do represent groups of formal series on
the coupling constants [Connes-Kreimer 1998, Pinter 2001, Keller 2010]

‚ Renormalization Hopf algebras:

- are right-sided combinatorial Hopf alg [Loday-Ronco 2008,

Brouder-AF-Menous 2011]

- are all related to operads and produce P-expanded series [Chapoton

2003, van der Laan 2003, AF 2008]

- admit non-commutative lifts [Brouder-AF 2000, 2006, Foissy 2001]

‚ Puzzling situation:
- Series with coefficients in a non-comm. algebra A do appear in

physics, but their commutative representative Hopf algebra is not
functorial in A cf. [Van Suijlekom 2007] for QED.

- These series are related to some non-commutative Hopf algebras which
are functorial in A.
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Aim of the talk
How are series related to non-commutative Hopf algebras?

‚ Toy model: the set of formal diffeomorphisms in one variable

DiffpAq “
!

apλq “ λ`
ÿ

ně1

an λ
n`1 | an P A

)

with composition law pa ˝ bqpλq “ a
`

bpλq
˘

and unit epλq “ λ, when A
is a unital associative algebra, but not commutative.

Examples of non-commutative coefficients A:

M4pCq matrix algebra
cf. QED renormalization [Brouder-AF-Krattenthaler 2001, 2006]

T pE q tensor algebra
cf. renormalization functor [Brouder-Schmitt 2002]

and work in progress on bundles with Brouder and Dang

LpHq linear operators on a Hilbert space

‚ Two problems:
1) define (pro)algebraic groups on non-commutative algebras
2) modify because DiffpAq is not a group!
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Lie and (pro)algebraic groups on commutative algebras
Group

G Lie group
or (pro)algebraic

G pAq – Hom
uCom

pRrG s,Aq

convolution group

Function algebra

RrG s “ OpG q
Hopf com

dense in C8pG q

representations

algebraic group
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Details on convolution groups and functorial Lie algebras
Let A be a commutative algebra and H be a commutative Hopf algebra.
Denote: multiplication m, unit u, coproduct ∆, counit ε and antipode S .

‚ The set Hom
uCom

pH,Aq forms a group with

convolution α ˚ β “ mA pαb βq ∆H

unit e “ uA εH

inverse α´1 “ α SH

‚ Let G be a (pro)algebraic group represented by the Hopf algebra RrG s,
and let x1, x2, ... be generators of RrG s (coordinate functions on G ).
Then the isomorphism G pAq – Hom

uCom
pRrG s,Aq is given by

g ÞÝÑ αg : RrG s Ñ A

xn ÞÑ αg pxnq “ xnpgq.

‚ Let g be a Lie algebra with bracket r , s. Then gA “ gb A is also a Lie
algebra with bracket

rx b a, y b bs “ rx , y s b ab,

and UgA – Ugb A.



Details on convolution groups and functorial Lie algebras
Let A be a commutative algebra and H be a commutative Hopf algebra.
Denote: multiplication m, unit u, coproduct ∆, counit ε and antipode S .

‚ The set Hom
uCom

pH,Aq forms a group with

convolution α ˚ β “ mA pαb βq ∆H

unit e “ uA εH

inverse α´1 “ α SH

‚ Let G be a (pro)algebraic group represented by the Hopf algebra RrG s,
and let x1, x2, ... be generators of RrG s (coordinate functions on G ).
Then the isomorphism G pAq – Hom

uCom
pRrG s,Aq is given by

g ÞÝÑ αg : RrG s Ñ A

xn ÞÑ αg pxnq “ xnpgq.

‚ Let g be a Lie algebra with bracket r , s. Then gA “ gb A is also a Lie
algebra with bracket

rx b a, y b bs “ rx , y s b ab,

and UgA – Ugb A.



Details on convolution groups and functorial Lie algebras
Let A be a commutative algebra and H be a commutative Hopf algebra.
Denote: multiplication m, unit u, coproduct ∆, counit ε and antipode S .

‚ The set Hom
uCom

pH,Aq forms a group with

convolution α ˚ β “ mA pαb βq ∆H

unit e “ uA εH

inverse α´1 “ α SH

‚ Let G be a (pro)algebraic group represented by the Hopf algebra RrG s,
and let x1, x2, ... be generators of RrG s (coordinate functions on G ).
Then the isomorphism G pAq – Hom

uCom
pRrG s,Aq is given by

g ÞÝÑ αg : RrG s Ñ A

xn ÞÑ αg pxnq “ xnpgq.

‚ Let g be a Lie algebra with bracket r , s. Then gA “ gb A is also a Lie
algebra with bracket

rx b a, y b bs “ rx , y s b ab,

and UgA – Ugb A.



Details on convolution groups and functorial Lie algebras
Let A be a commutative algebra and H be a commutative Hopf algebra.
Denote: multiplication m, unit u, coproduct ∆, counit ε and antipode S .

‚ The set Hom
uCom

pH,Aq forms a group with

convolution α ˚ β “ mA pαb βq ∆H

unit e “ uA εH

inverse α´1 “ α SH

‚ Let G be a (pro)algebraic group represented by the Hopf algebra RrG s,
and let x1, x2, ... be generators of RrG s (coordinate functions on G ).
Then the isomorphism G pAq – Hom

uCom
pRrG s,Aq is given by

g ÞÝÑ αg : RrG s Ñ A

xn ÞÑ αg pxnq “ xnpgq.

‚ Let g be a Lie algebra with bracket r , s. Then gA “ gb A is also a Lie
algebra with bracket

rx b a, y b bs “ rx , y s b ab,

and UgA – Ugb A.



Convolution groups on non-commutative algebras
Let A and H be unital associative algebras (not nec. commutative).

‚ Even if H is a Hopf algebra, the convolution α ˚ β “ mA pαb βq ∆H is
not well defined on Hom

uAs
pH,Aq, because it is not an algebra morphism.

‚ Solve requiring a modified coproduct ∆f : H Ñ H f H, where
Af B is the free product algebra with concatenation
ab b b a1 b b1 b ¨ ¨ ¨ instead of paa1 ¨ ¨ ¨ q b pbb1 ¨ ¨ ¨ q as in Ab B.

Then mA : Ab AÑ A induces an algebra morphism mfA : Af AÑ A,
can define the convolution

α ˚ β “ mfA pαf βq ∆f
H

and get a group [Zhang 1991, Bergman-Hausknecht 1996].

‚ If pH,∆fq is a modified Hopf algebra, then the natural projection
∆ “ π∆f : H Ñ H f H Ñ H b H defines a usual Hopf algebra!

This explains how invertible series G pAq “
!

apλq “ 1`
ř

anλ
n
)

with pa 9bqpλq “ apλqbpλq still form a proalgebraic group,
represented by the algebra of non commutative symmetric functions

H “ Kxx1, x2, . . .y, ∆fpxnq “
ÿ

xm b xn´m.

[Brouder-AF-Krattenthaler 2006, cf. AF-Manchon 2014]
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Lie algebras with non-commutative coefficients

Let g be a Lie algebra and A a unital associative algebra.

‚ On the vector space gb A the simple law rx b a, y b bs “ rx , y s b ab
does not define a Lie bracket (Jacobi fails).

‚ In fact it is an open problem to define a Lie bracket on gb A!

Only known example is sl2 b J where J is a Jordan algebra
(commutative but not associative), but does not fit.

‚ Let us turn the problem: what is the infinitesimal structure of a
(pro)algebraic group G pAq if A is not commutative?

Hints come from good triples of operads [Loday 2008], if we apply
functors to non-commutative algebras get the triple pAs,As,Vectq:
gA is just a vector space!
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(Pro)algebraic groups on non-commutative algebras
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(not com)

reps ?
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Still a problem with diffeomorphisms!
‚ If A is a unital associative algebra (not commutative), the set

DiffpAq “
!

apλq “ λ`
ÿ

an λ
n`1 | an P A

)

does not form a group because the composition is not associative:

´

a ˝ pb ˝ cq
¯

pλq ´
´

pa ˝ bq ˝ c
¯

pλq “ pa1b1c1´ a1c1b1q λ
4`Opλ5q ‰ 0.

‚ However the Faà di Bruno Hopf algebra HFdB “ RrDiffs lifts up to a
non commutative Hopf algebra Hnc

FdB “ Kxx1, x2, ...y with

∆nc
FdBpxnq “

n
ÿ

m“0

xm b
ÿ

pkq

xk0 ¨ ¨ ¨ xkm px0 “ 1q,

where pkq “ pk0, k1, ..., kmq with ki ě 0 and k0 ` k1 ` ¨ ¨ ¨ ` km “ n´m
[Brouder-AF-Krattenthaler 2006].

‚ The coproduct ∆nc
FdB can be modified into an algebra morphism

∆f
FdB : Hnc

FdB ÝÑ Hnc
FdB f Hnc

FdB,

then it represents DiffpAq and of course it loses coassociativity!



Still a problem with diffeomorphisms!
‚ If A is a unital associative algebra (not commutative), the set

DiffpAq “
!

apλq “ λ`
ÿ

an λ
n`1 | an P A

)

does not form a group because the composition is not associative:

´

a ˝ pb ˝ cq
¯

pλq ´
´

pa ˝ bq ˝ c
¯

pλq “ pa1b1c1´ a1c1b1q λ
4`Opλ5q ‰ 0.
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Smooth loops

‚ A loop is a set Q with a multiplication and a unit e, such that the
operators of left and right translation

Lapxq “ a ¨ x and Rapxq “ x ¨ a

are invertible, but L´1
a ‰La´1 , R´1

a ‰Ra´1 because a´1 does not exist!

Call left and right division: azb “ L´1
a pbq and b{a “ R´1

a pbq.

‚ Smooth loops were introduced by
Ruth Moufang [1935], later related to
Maltsev algebras [1955] and to alge-
braic webs [Blaschke 1955].

‚ Any Lie group is a smooth loop:

a{b “ a ¨ b´1 and azb “ a´1 ¨ b.

‚ The smallest loop which is not a group
is the sphere S7, which can be seen as
the set of unit octonions in O.
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Call left and right division: azb “ L´1
a pbq and b{a “ R´1

a pbq.

‚ Smooth loops were introduced by
Ruth Moufang [1935], later related to
Maltsev algebras [1955] and to alge-
braic webs [Blaschke 1955].

‚ Any Lie group is a smooth loop:

a{b “ a ¨ b´1 and azb “ a´1 ¨ b.

‚ The smallest loop which is not a group
is the sphere S7, which can be seen as
the set of unit octonions in O.



Loops, homogeneous spaces and flat connections
‚ A homogeneous space is a (local) loop with the residual structure

of the group action. That is, if M “ G{H is a homogeneous space for
a Lie group G , p : G Ñ M is the projection and i : U Ă M ÝÑ G a
(local) section around any point e P M, then

x ¨ y “ ppipxqipyqq, x , y P M

is a (local) loop multiplication [Sabinin 1972].

‚ A manifold with flat connection is a “geodesic” (local) loop.

- If Q is a smooth loop, define a parallel transport Pb
a :TaQ ÑTbQ

as the differential of the map x ÞÑ b ¨ pazxq. The tangent bundle is
then trivialized, and get a flat connection ∇ [Sabinin 1986].

N.B. For Lie groups, same result by Élie Cartan [1904, 1927],

moreover torsion has zero covariant derivative!

- If M is a smoot manifold with a flat connection ∇, around any e P M
can define a (local) loop by [Sabinin 1977, 1981]

a ‚e b “ expa

`

Pa
e plogepbqq

˘

.

Moreover it is right-alternative: pa ‚ bpq ‚ bq “ a ‚ bp`q.

If Q is right-alternative then ¨ “ ‚, otherwise a ¨ b “ a ‚ Φpa, bq.
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Infinitesimal structure of loops: Sabinin algebras
‚ A Sabinin algebra (ex Φ-hyperalgebra) is a vector space q with

x ; , y : Tqb q^ q ÝÑ q

Φ : Sqb Sq ÝÑ q

such that, if u, v P Tq and x , y , z , z 1 P q are chosen in a given basis,

xurz , z 1sv ; x , yy `
ÿ

xup1qxup2q; z , z
1yv ; y , xy “ 0

ÿ

px,y ,zq

´

xuz ; x , yy `
ÿ

xup1q; xup2q; x , yy, zy
¯

“ 0

where ∆u “
ř

up1q b up2q is the unshuffle coproduct on Tq (cocom).

‚ Geometrical explanation: if q “ TeQ and ∇ is the flat connection
on Q, can choose a basis of ∇-constant vector fields X ,Y ,Z , ... so that
∇XY “ 0 and RpX ,Y qZ “ 0, and set

x Z1, ...,Zm;X ,Y y “ ∇Z1 ¨ ¨ ¨∇ZmT pX ,Y q

(Φ omitted because more complicated). Then
Sabinin identities = Bianchi identities relating torsion and curvature.
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Smooth and (pro)algebraic loops on commutative algebras
Loop

Q smooth
or (pro)algebraic

QpAq – Hom
uCom

pRrQs,Aq

convolution group

Function algebra

RrQs “ OpQq

alg: as + com
coalg: mag + codivisions

reps ?

algebraic loop

Sabinin algebra

q “ TeQ – XLpQq
Ă PrimUq

uMag Ñ Sab : A ÞÑ AS

[Shestakov-Umirbaev 2002]

infinitesimal
structure

Enveloping algebra

Ug – RrG s˚

alg: mag + divisons
coalg: cocom + coas

Hom
Sab

pq,ASq – Hom
uMag

pUq,Aq

algebra ext.

primitives

adjoint functors

Hopf-type
duality



Loop of formal diffeomorphisms
Standard way to produce loops: invertibles in magmatic algebras or formal loops.
Here, non standard one: modify coefficients [AF-Shestakov]

‚ Heisenberg loop: the set of Heisenberg matrices (or any triangular)

HL3pAq “

$

&

%

¨

˝

1 a c
0 1 b
0 0 1

˛

‚ | a, b, c P A

,

.

-

is a loop with matrix product even when A is a non-associative algebra
(e.g. octonions). It is a group if A associative (e.g. quaternions).

‚ Loop of formal diffeomorphisms: the set of formal diffeomorphism

DiffpAq “
!

a “
ÿ

ně0

an λ
n`1 | a0 “ 1, an P A

)

,

with composition

a ˝ b “
ÿ

ně0

n
ÿ

m“0

ÿ

k0`¨¨¨`km“n´m

am bk0 ¨ ¨ ¨ bkm λ
n`1

is a loop if A is a unital associative algebra. It is right alternative and
therefore power associative. It is a group if A is commutative.

‚ Loop of P-expanded series: the same holds for series expanded over
any operad P with Pp0q “ 0 and Pp1q “ tidu and coeff in A.
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Proof that the free product f is necessary

In the loop DiffpAq, call b´1 the series as if A were commutative, then
a{b “ a ˝ b´1 but bza ‰ b´1 ˝ a !

‚ In the series bza, the coefficient

pbzaq3 “ a3 ´
`

2b1a2 ` b1a
2
1

˘

`
`

5b21a1 ` b1a1b1 ´ 3b2a1
˘

´
`

5b31 ´ 2b1b2 ´ 3b2b1 ` b3
˘

contains the term b1a1b1 which can not be represented in the form
f pbq b gpaq P Hnc

FdB b Hnc
FdB, while clearly belongs to Hnc

FdB f Hnc
FdB.

This justifies the need to replace b by f in the definition of the
coproduct of RrDiffpAqs.

‚ Moreover, the difference `

a{b ´ bzaq3 “ b21a1 ´ b1a1b1

shows why the non-comm. Faà di Bruno Hopf algebra exists:
∆nc

FdB recovered from ∆f
FdB by composing with the projection

Hnc
FdB f Hnc

FdB Ñ Hnc
FdB b Hnc

FdB

which identifies b1a1b1 and b21a1. Then a{b “ bza and b´1 is a
two-sided inverse.
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(Pro)algebraic loops on non-commutative algebras [AF-IS]

Loop

Q (pro)algebraic

QpAq – Hom
uAss

pRrQs,Aq

convolution loop

Function algebra

RrQs

alg: as
coalg: f

mag + codivisions

reps ?

algebraic group

Unknown

related to Brace

and to

Shestakov-Umirbaev

p-operations

infinitesimal
structure

Enveloping algebra

Ug – RrG s˚

alg: f
mag + divisons

coalg: coas

algebra ext.

primitives

Hopf-type
duality



THANK YOU!


