Loop of formal diffeomorphisms

A. Frabetti (Lyon, France)

based on a work in progress with

Ivan P. Shestakov (Sao Paulo, Brasil)

Potsdam, 8-12 February, 2016

Motivation: from renormalization Hopf algebras to series

- Diffeomorphism groups fix structure in geometry and physics.

Motivation: from renormalization Hopf algebras to series

- Diffeomorphism groups fix structure in geometry and physics.
- Taylor expansion gives formal diffeomorphisms, ok for perturbations. They form proalgebraic groups, represented by commutative Hopf algebras on infinitely many generators.

Motivation: from renormalization Hopf algebras to series

- Diffeomorphism groups fix structure in geometry and physics.
- Taylor expansion gives formal diffeomorphisms, ok for perturbations. They form proalgebraic groups, represented by commutative Hopf algebras on infinitely many generators.
- In pQFT, ren. Hopf algebras do represent groups of formal series on the coupling constants [Connes-Kreimer 1998, Pinter 2001, Keller 2010]

Motivation: from renormalization Hopf algebras to series

- Diffeomorphism groups fix structure in geometry and physics.
- Taylor expansion gives formal diffeomorphisms, ok for perturbations. They form proalgebraic groups, represented by commutative Hopf algebras on infinitely many generators.
- In pQFT, ren. Hopf algebras do represent groups of formal series on the coupling constants [Connes-Kreimer 1998, Pinter 2001, Keller 2010]
- Renormalization Hopf algebras:
- are right-sided combinatorial Hopf alg [Loday-Ronco 2008, Brouder-AF-Menous 2011]
- are all related to operads and produce \mathcal{P}-expanded series [Chapoton 2003, van der Laan 2003, AF 2008]
- admit non-commutative lifts [Brouder-AF 2000, 2006, Foissy 2001]

Motivation: from renormalization Hopf algebras to series

- Diffeomorphism groups fix structure in geometry and physics.
- Taylor expansion gives formal diffeomorphisms, ok for perturbations. They form proalgebraic groups, represented by commutative Hopf algebras on infinitely many generators.
- In pQFT, ren. Hopf algebras do represent groups of formal series on the coupling constants [Connes-Kreimer 1998, Pinter 2001, Keller 2010]
- Renormalization Hopf algebras:
- are right-sided combinatorial Hopf alg [Loday-Ronco 2008, Brouder-AF-Menous 2011]
- are all related to operads and produce \mathcal{P}-expanded series [Chapoton 2003, van der Laan 2003, AF 2008]
- admit non-commutative lifts [Brouder-AF 2000, 2006, Foissy 2001]
- Puzzling situation:
- Series with coefficients in a non-comm. algebra A do appear in physics, but their commutative representative Hopf algebra is not functorial in A cf. [Van Suijlekom 2007] for QED.
- These series are related to some non-commutative Hopf algebras which are functorial in A.

Aim of the talk

How are series related to non-commutative Hopf algebras?

Aim of the talk

How are series related to non-commutative Hopf algebras?

- Toy model: the set of formal diffeomorphisms in one variable

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\lambda+\sum_{n \geqslant 1} a_{n} \lambda^{n+1} \mid a_{n} \in A\right\}
$$

with composition law $(a \circ b)(\lambda)=a(b(\lambda))$ and unit $e(\lambda)=\lambda$, when A is a unital associative algebra, but not commutative.

Aim of the talk

How are series related to non-commutative Hopf algebras?

- Toy model: the set of formal diffeomorphisms in one variable

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\lambda+\sum_{n \geqslant 1} a_{n} \lambda^{n+1} \mid a_{n} \in A\right\}
$$

with composition law $(a \circ b)(\lambda)=a(b(\lambda))$ and unit $e(\lambda)=\lambda$, when A is a unital associative algebra, but not commutative.
Examples of non-commutative coefficients A :
$M_{4}(\mathbb{C})$ matrix algebra
cf. QED renormalization [Brouder-AF-Krattenthaler 2001, 2006]
$T(E) \quad$ tensor algebra
cf. renormalization functor [Brouder-Schmitt 2002] and work in progress on bundles with Brouder and Dang
$\mathcal{L}(\mathcal{H})$ linear operators on a Hilbert space

Aim of the talk

How are series related to non-commutative Hopf algebras?

- Toy model: the set of formal diffeomorphisms in one variable

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\lambda+\sum_{n \geqslant 1} a_{n} \lambda^{n+1} \mid a_{n} \in A\right\}
$$

with composition law $(a \circ b)(\lambda)=a(b(\lambda))$ and unit $e(\lambda)=\lambda$, when A is a unital associative algebra, but not commutative.
Examples of non-commutative coefficients A :
$M_{4}(\mathbb{C})$ matrix algebra
cf. QED renormalization [Brouder-AF-Krattenthaler 2001, 2006]
$T(E) \quad$ tensor algebra
cf. renormalization functor [Brouder-Schmitt 2002] and work in progress on bundles with Brouder and Dang
$\mathcal{L}(\mathcal{H})$ linear operators on a Hilbert space

- Two problems:

1) define (pro)algebraic groups on non-commutative algebras
2) modify because $\operatorname{Diff}(A)$ is not a group!

Lie and (pro)algebraic groups on commutative algebras

Group

$$
\begin{gathered}
G \text { Lie group } \\
\text { or (pro)algebraic } \\
G(A) \cong \underset{u C o m}{\operatorname{Hom}}(R[G], A)
\end{gathered}
$$

Function algebra
$R[G]=\mathcal{O}(G)$
Hopf com
dense in $C^{\infty}(G)$

Lie and (pro)algebraic groups on commutative algebras

Group

$$
\begin{gathered}
\text { G Lie group } \\
\text { or (pro)algebraic } \\
G(A) \cong \underset{\substack{u \operatorname{Com} \\
\text { convolution group }}}{ } \quad \begin{array}{l}
\text { com }[G], A)
\end{array} \\
\hline
\end{gathered}
$$

Function algebra
$R[G]=\mathcal{O}(G)$
Hopf com
dense in $C^{\infty}(G)$
infinitesimal structure

$$
\begin{gathered}
\mathfrak{g}=T_{e} G \cong \operatorname{Prim} U \mathfrak{g} \\
\mathfrak{g}_{A}=\mathfrak{g} \otimes A \\
u A s \rightarrow L i e: A \mapsto A_{L} \\
{[a, b]=a b-b a}
\end{gathered}
$$

Lie algebra

Details on convolution groups and functorial Lie algebras

Let A be a commutative algebra and H be a commutative Hopf algebra. Denote: multiplication m, unit u, coproduct Δ, counit ε and antipode S.

Details on convolution groups and functorial Lie algebras

Let A be a commutative algebra and H be a commutative Hopf algebra. Denote: multiplication m, unit u, coproduct Δ, counit ε and antipode S.

- The set $\underset{u C o m}{\operatorname{Hom}}(H, A)$ forms a group with

$$
\begin{aligned}
& \text { convolution } \quad \alpha * \beta=m_{A}(\alpha \otimes \beta) \Delta_{H} \\
& \text { unit } \quad e=u_{A} \varepsilon_{H} \\
& \text { inverse } \quad \alpha^{-1}=\alpha S_{H}
\end{aligned}
$$

Details on convolution groups and functorial Lie algebras

Let A be a commutative algebra and H be a commutative Hopf algebra. Denote: multiplication m, unit u, coproduct Δ, counit ε and antipode S.

- The set $\underset{u C o m}{\operatorname{Hom}}(H, A)$ forms a group with

$$
\begin{aligned}
& \text { convolution } \quad \alpha * \beta=m_{A}(\alpha \otimes \beta) \Delta_{H} \\
& \text { unit } \quad e=u_{A} \varepsilon_{H} \\
& \text { inverse } \quad \alpha^{-1}=\alpha S_{H}
\end{aligned}
$$

- Let G be a (pro)algebraic group represented by the Hopf algebra $R[G]$, and let x_{1}, x_{2}, \ldots be generators of $R[G]$ (coordinate functions on G). Then the isomorphism $G(A) \cong \underset{U C o m}{\operatorname{Hom}}(R[G], A)$ is given by

$$
\begin{aligned}
g \longmapsto \alpha_{g}: R[G] & \rightarrow A \\
& x_{n} \mapsto \alpha_{g}\left(x_{n}\right)=x_{n}(g) .
\end{aligned}
$$

Details on convolution groups and functorial Lie algebras

Let A be a commutative algebra and H be a commutative Hopf algebra. Denote: multiplication m, unit u, coproduct Δ, counit ε and antipode S.

- The set $\underset{u C o m}{\operatorname{Hom}}(H, A)$ forms a group with

$$
\begin{aligned}
& \text { convolution } \quad \alpha * \beta=m_{A}(\alpha \otimes \beta) \Delta_{H} \\
& \text { unit } \quad e=u_{A} \varepsilon_{H} \\
& \text { inverse } \quad \alpha^{-1}=\alpha S_{H}
\end{aligned}
$$

- Let G be a (pro)algebraic group represented by the Hopf algebra $R[G]$, and let x_{1}, x_{2}, \ldots be generators of $R[G]$ (coordinate functions on G). Then the isomorphism $G(A) \cong \underset{U C o m}{\operatorname{Hom}}(R[G], A)$ is given by

$$
\left.\begin{array}{rl}
g \longmapsto \alpha_{g}: & R[G]
\end{array}\right) A
$$

- Let \mathfrak{g} be a Lie algebra with bracket [,]. Then $\mathfrak{g}_{A}=\mathfrak{g} \otimes A$ is also a Lie algebra with bracket

$$
[x \otimes a, y \otimes b]=[x, y] \otimes a b,
$$

and $U_{\mathfrak{g}}^{A} \cong\left(U_{\mathfrak{g}} \otimes A\right.$.

Convolution groups on non-commutative algebras

Let A and H be unital associative algebras (not nec. commutative).

Convolution groups on non-commutative algebras

Let A and H be unital associative algebras (not nec. commutative).

- Even if H is a Hopf algebra, the convolution $\alpha * \beta=m_{A}(\alpha \otimes \beta) \Delta_{H}$ is not well defined on $\operatorname{Hom}(H, A)$, because it is not an algebra morphism. uAs

Convolution groups on non-commutative algebras

Let A and H be unital associative algebras (not nec. commutative).

- Even if H is a Hopf algebra, the convolution $\alpha * \beta=m_{A}(\alpha \otimes \beta) \Delta_{H}$ is not well defined on $\underset{u A s}{\operatorname{Hom}}(H, A)$, because it is not an algebra morphism.
- Solve requiring a modified coproduct $\Delta^{\circledast}: H \rightarrow H \circledast H$, where $A \circledast B$ is the free product algebra with concatenation $a \otimes b \otimes a^{\prime} \otimes b^{\prime} \otimes \cdots$ instead of $\left(a a^{\prime} \cdots\right) \otimes\left(b b^{\prime} \cdots\right)$ as in $A \otimes B$. Then $m_{A}: A \otimes A \rightarrow A$ induces an algebra morphism $m_{A}^{\circledast}: A \circledast A \rightarrow A$, can define the convolution

$$
\alpha * \beta=m_{A}^{\circledast}(\alpha \circledast \beta) \Delta_{H}^{\circledast}
$$

and get a group [Zhang 1991, Bergman-Hausknecht 1996].

Convolution groups on non-commutative algebras

Let A and H be unital associative algebras (not nec. commutative).

- Even if H is a Hopf algebra, the convolution $\alpha * \beta=m_{A}(\alpha \otimes \beta) \Delta_{H}$ is not well defined on $\underset{u A s}{\operatorname{Hom}}(H, A)$, because it is not an algebra morphism.
- Solve requiring a modified coproduct $\Delta^{\circledast}: H \rightarrow H \circledast H$, where $A \circledast B$ is the free product algebra with concatenation $a \otimes b \otimes a^{\prime} \otimes b^{\prime} \otimes \cdots$ instead of $\left(a a^{\prime} \cdots\right) \otimes\left(b b^{\prime} \cdots\right)$ as in $A \otimes B$. Then $m_{A}: A \otimes A \rightarrow A$ induces an algebra morphism $m_{A}^{\circledast}: A \circledast A \rightarrow A$, can define the convolution

$$
\alpha * \beta=m_{A}^{\circledast}(\alpha \circledast \beta) \Delta_{H}^{\circledast}
$$

and get a group [Zhang 1991, Bergman-Hausknecht 1996].

- If $\left(H, \Delta^{\circledast}\right)$ is a modified Hopf algebra, then the natural projection $\Delta=\pi \Delta^{\circledast}: H \rightarrow H \circledast H \rightarrow H \otimes H$ defines a usual Hopf algebra! This explains how invertible series $G(A)=\left\{a(\lambda)=1+\sum a_{n} \lambda^{n}\right\}$ with $\quad(a \dot{b})(\lambda)=a(\lambda) b(\lambda) \quad$ still form a proalgebraic group, represented by the algebra of non commutative symmetric functions

$$
H=\mathbb{K}\left\langle x_{1}, x_{2}, \ldots\right\rangle, \quad \Delta^{\circledast}\left(x_{n}\right)=\sum x_{m} \otimes x_{n-m} .
$$

[Brouder-AF-Krattenthaler 2006, cf. AF-Manchon 2014]

Lie algebras with non-commutative coefficients

Let \mathfrak{g} be a Lie algebra and A a unital associative algebra.

Lie algebras with non-commutative coefficients

Let \mathfrak{g} be a Lie algebra and A a unital associative algebra.

- On the vector space $\mathfrak{g} \otimes A$ the simple law $[x \otimes a, y \otimes b]=[x, y] \otimes a b$ does not define a Lie bracket (Jacobi fails).

Lie algebras with non-commutative coefficients

Let \mathfrak{g} be a Lie algebra and A a unital associative algebra.

- On the vector space $\mathfrak{g} \otimes A$ the simple law $[x \otimes a, y \otimes b]=[x, y] \otimes a b$ does not define a Lie bracket (Jacobi fails).
- In fact it is an open problem to define a Lie bracket on $\mathfrak{g} \otimes A$!

Only known example is $\mathfrak{s l}_{2} \otimes J$ where J is a Jordan algebra (commutative but not associative), but does not fit.

Lie algebras with non-commutative coefficients

Let \mathfrak{g} be a Lie algebra and A a unital associative algebra.

- On the vector space $\mathfrak{g} \otimes A$ the simple law $[x \otimes a, y \otimes b]=[x, y] \otimes a b$ does not define a Lie bracket (Jacobi fails).
- In fact it is an open problem to define a Lie bracket on $\mathfrak{g} \otimes A$!

Only known example is $\mathfrak{s l}_{2} \otimes J$ where J is a Jordan algebra (commutative but not associative), but does not fit.

- Let us turn the problem: what is the infinitesimal structure of a (pro)algebraic group $G(A)$ if A is not commutative?

Lie algebras with non-commutative coefficients

Let \mathfrak{g} be a Lie algebra and A a unital associative algebra.

- On the vector space $\mathfrak{g} \otimes A$ the simple law $[x \otimes a, y \otimes b]=[x, y] \otimes a b$ does not define a Lie bracket (Jacobi fails).
- In fact it is an open problem to define a Lie bracket on $\mathfrak{g} \otimes A$!

Only known example is $\mathfrak{s l}_{2} \otimes J$ where J is a Jordan algebra (commutative but not associative), but does not fit.

- Let us turn the problem: what is the infinitesimal structure of a (pro)algebraic group $G(A)$ if A is not commutative? Hints come from good triples of operads [Loday 2008], if we apply functors to non-commutative algebras get the triple ($A \overline{s, A s, V e c t)}$: $\overline{\mathfrak{g}_{A}}$ is just a vector space!
(Pro)algebraic groups on non-commutative algebras

Group

Vector space
\mathfrak{g}_{A} (pro)algebraic
$\cong \operatorname{Prim} U \mathfrak{g}_{A}$

Function algebra

$$
\begin{gathered}
R[G] \\
\Delta^{*-H o p f ~ a s, ~ c o a s ~} \\
(\text { not com })
\end{gathered}
$$

Enveloping algebra

$$
U \mathfrak{g} \cong R[G]^{*}
$$

*-Hopf as, coas (not cocom)

Still a problem with diffeomorphisms!

- If A is a unital associative algebra (not commutative), the set

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\lambda+\sum a_{n} \lambda^{n+1} \mid a_{n} \in A\right\}
$$

does not form a group because the composition is not associative:

$$
(a \circ(b \circ c))(\lambda)-((a \circ b) \circ c)(\lambda)=\left(a_{1} b_{1} c_{1}-a_{1} c_{1} b_{1}\right) \lambda^{4}+O\left(\lambda^{5}\right) \neq 0 .
$$

Still a problem with diffeomorphisms!

- If A is a unital associative algebra (not commutative), the set

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\lambda+\sum a_{n} \lambda^{n+1} \mid a_{n} \in A\right\}
$$

does not form a group because the composition is not associative:

$$
(a \circ(b \circ c))(\lambda)-((a \circ b) \circ c)(\lambda)=\left(a_{1} b_{1} c_{1}-a_{1} c_{1} b_{1}\right) \lambda^{4}+O\left(\lambda^{5}\right) \neq 0 .
$$

- However the Faà di Bruno Hopf algebra $H_{\mathrm{FdB}}=R[$ Diff $]$ lifts up to a non commutative Hopf algebra $H_{\mathrm{FdB}}^{\mathrm{nc}}=\mathbb{K}\left\langle x_{1}, x_{2}, \ldots\right\rangle$ with

$$
\Delta_{\mathrm{FdB}}^{\mathrm{nc}}\left(x_{n}\right)=\sum_{m=0}^{n} x_{m} \otimes \sum_{(k)} x_{k_{0}} \cdots x_{k_{m}} \quad\left(x_{0}=1\right)
$$

where $(k)=\left(k_{0}, k_{1}, \ldots, k_{m}\right)$ with $k_{i} \geqslant 0$ and $k_{0}+k_{1}+\cdots+k_{m}=n-m$ [Brouder-AF-Krattenthaler 2006].

Still a problem with diffeomorphisms!

- If A is a unital associative algebra (not commutative), the set

$$
\operatorname{Diff}(A)=\left\{a(\lambda)=\lambda+\sum a_{n} \lambda^{n+1} \mid a_{n} \in A\right\}
$$

does not form a group because the composition is not associative:

$$
(a \circ(b \circ c))(\lambda)-((a \circ b) \circ c)(\lambda)=\left(a_{1} b_{1} c_{1}-a_{1} c_{1} b_{1}\right) \lambda^{4}+O\left(\lambda^{5}\right) \neq 0 .
$$

- However the Faà di Bruno Hopf algebra $H_{\mathrm{FdB}}=R[$ Diff $]$ lifts up to a non commutative Hopf algebra $H_{\mathrm{FdB}}^{\mathrm{nc}}=\mathbb{K}\left\langle x_{1}, x_{2}, \ldots\right\rangle$ with

$$
\Delta_{\mathrm{FdB}}^{\mathrm{nc}}\left(x_{n}\right)=\sum_{m=0}^{n} x_{m} \otimes \sum_{(k)} x_{k_{0}} \cdots x_{k_{m}} \quad\left(x_{0}=1\right)
$$

where $(k)=\left(k_{0}, k_{1}, \ldots, k_{m}\right)$ with $k_{i} \geqslant 0$ and $k_{0}+k_{1}+\cdots+k_{m}=n-m$ [Brouder-AF-Krattenthaler 2006].

- The coproduct $\Delta_{\mathrm{FdB}}^{\mathrm{nc}}$ can be modified into an algebra morphism

$$
\Delta_{\mathrm{FdB}}^{\circledast}: H_{\mathrm{FdB}}^{\mathrm{nc}} \longrightarrow H_{\mathrm{FdB}}^{\mathrm{nc}} \circledast H_{\mathrm{FdB}}^{\mathrm{nc}},
$$

then it represents $\operatorname{Diff}(A)$ and of course it loses coassociativity!

Smooth loops

- A loop is a set Q with a multiplication and a unit e, such that the operators of left and right translation

$$
L_{a}(x)=a \cdot x \quad \text { and } \quad R_{a}(x)=x \cdot a
$$

are invertible, but $L_{a}^{-1} \neq L_{a^{-1}}, R_{a}^{-1} \neq R_{a^{-1}}$ because a^{-1} does not exist!
Call left and right division: $\quad a \backslash b=L_{a}^{-1}(b) \quad$ and $\quad b / a=R_{a}^{-1}(b)$.

Smooth loops

- A loop is a set Q with a multiplication and a unit e, such that the operators of left and right translation

$$
L_{a}(x)=a \cdot x \quad \text { and } \quad R_{a}(x)=x \cdot a
$$

are invertible, but $L_{\mathrm{a}}^{-1} \neq L_{a^{-1}}, R_{\mathrm{a}}^{-1} \neq R_{\mathrm{a}^{-1}}$ because a^{-1} does not exist! Call left and right division: $\quad a \backslash b=L_{a}^{-1}(b)$ and $\quad b / a=R_{a}^{-1}(b)$.

- Smooth loops were introduced by Ruth Moufang [1935], later related to Maltsev algebras [1955] and to alge-

- The smallest loop which is not a group is the sphere \mathbb{S}^{7}, which can be seen as the set of unit octonions in \mathbb{O}.
- Any Lie group is a smooth loop:

$$
a / b=a \cdot b^{-1} \quad \text { and } \quad a \backslash b=a^{-1} \cdot b
$$ braic webs [Blaschke 1955].

Loops, homogeneous spaces and flat connections

- A homogeneous space is a (local) loop with the residual structure of the group action. That is, if $M=G / H$ is a homogeneous space for a Lie group $G, p: G \rightarrow M$ is the projection and $i: U \subset M \longrightarrow G$ a (local) section around any point $e \in M$, then

$$
x \cdot y=p(i(x) i(y)), \quad x, y \in M
$$

is a (local) loop multiplication [Sabinin 1972].

Loops, homogeneous spaces and flat connections

- A homogeneous space is a (local) loop with the residual structure of the group action. That is, if $M=G / H$ is a homogeneous space for a Lie group $G, p: G \rightarrow M$ is the projection and $i: U \subset M \longrightarrow G$ a (local) section around any point $e \in M$, then

$$
x \cdot y=p(i(x) i(y)), \quad x, y \in M
$$

is a (local) loop multiplication [Sabinin 1972].

- A manifold with flat connection is a "geodesic" (local) loop.
- If Q is a smooth loop, define a parallel transport $P_{a}^{b}: T_{a} Q \rightarrow T_{b} Q$ as the differential of the map $\quad x \mapsto b \cdot(a \backslash x)$. The tangent bundle is then trivialized, and get a flat connection ∇ [Sabinin 1986].
N.B. For Lie groups, same result by Élie Cartan [1904, 1927], moreover torsion has zero covariant derivative!

Loops, homogeneous spaces and flat connections

- A homogeneous space is a (local) loop with the residual structure of the group action. That is, if $M=G / H$ is a homogeneous space for a Lie group $G, p: G \rightarrow M$ is the projection and $i: U \subset M \longrightarrow G$ a (local) section around any point $e \in M$, then

$$
x \cdot y=p(i(x) i(y)), \quad x, y \in M
$$

is a (local) loop multiplication [Sabinin 1972].

- A manifold with flat connection is a "geodesic" (local) loop.
- If Q is a smooth loop, define a parallel transport $P_{a}^{b}: T_{a} Q \rightarrow T_{b} Q$ as the differential of the map $\quad x \mapsto b \cdot(a \backslash x)$. The tangent bundle is then trivialized, and get a flat connection ∇ [Sabinin 1986].
N.B. For Lie groups, same result by Élie Cartan [1904, 1927], moreover torsion has zero covariant derivative!
- If M is a smoot manifold with a flat connection ∇, around any $e \in M$ can define a (local) loop by [Sabinin 1977, 1981]

$$
a \bullet e b=\exp _{a}\left(P_{e}^{a}\left(\log _{e}(b)\right)\right)
$$

Moreover it is right-alternative: $\left(a \bullet b^{p}\right) \bullet b^{q}=a \bullet b^{p+q}$.

Loops, homogeneous spaces and flat connections

- A homogeneous space is a (local) loop with the residual structure of the group action. That is, if $M=G / H$ is a homogeneous space for a Lie group $G, p: G \rightarrow M$ is the projection and $i: U \subset M \longrightarrow G$ a (local) section around any point $e \in M$, then

$$
x \cdot y=p(i(x) i(y)), \quad x, y \in M
$$

is a (local) loop multiplication [Sabinin 1972].

- A manifold with flat connection is a "geodesic" (local) loop.
- If Q is a smooth loop, define a parallel transport $P_{a}^{b}: T_{a} Q \rightarrow T_{b} Q$ as the differential of the map $\quad x \mapsto b \cdot(a \backslash x)$. The tangent bundle is then trivialized, and get a flat connection ∇ [Sabinin 1986].
N.B. For Lie groups, same result by Élie Cartan [1904, 1927], moreover torsion has zero covariant derivative!
- If M is a smoot manifold with a flat connection ∇, around any $e \in M$ can define a (local) loop by [Sabinin 1977, 1981]

$$
a \bullet e b=\exp _{a}\left(P_{e}^{a}\left(\log _{e}(b)\right)\right)
$$

Moreover it is right-alternative: $\left(a \bullet b^{p}\right) \bullet b^{q}=a \bullet b^{p+q}$.
If Q is right-alternative then $=\bullet$, otherwise $a \cdot b=a \bullet \Phi(a, b)$.

Infinitesimal structure of loops: Sabinin algebras

- A Sabinin algebra (ex Ф-hyperalgebra) is a vector space \mathfrak{q} with

$$
\begin{gathered}
\langle;,\rangle: T \mathfrak{q} \otimes \mathfrak{q} \wedge \mathfrak{q} \longrightarrow \mathfrak{q} \\
\Phi: S \mathfrak{q} \otimes S \mathfrak{q} \longrightarrow \mathfrak{q}
\end{gathered}
$$

such that, if $u, v \in T \mathfrak{q}$ and $x, y, z, z^{\prime} \in \mathfrak{q}$ are chosen in a given basis,

$$
\begin{aligned}
&\left\langle u\left[z, z^{\prime}\right] v ; x, y\right\rangle+\sum\left\langle u_{(1)}\left\langle u_{(2)} ; z, z^{\prime}\right\rangle v ; y, x\right\rangle=0 \\
& \sum_{(x, y, z)}\left(\langle u z ; x, y\rangle+\sum\left\langle u_{(1)} ;\left\langle u_{(2)} ; x, y\right\rangle, z\right\rangle\right)=0
\end{aligned}
$$

where $\Delta u=\sum u_{(1)} \otimes u_{(2)}$ is the unshuffle coproduct on $T \mathfrak{q}$ (cocom).

Infinitesimal structure of loops: Sabinin algebras

- A Sabinin algebra (ex Φ-hyperalgebra) is a vector space \mathfrak{q} with

$$
\begin{gathered}
\langle;,\rangle: T \mathfrak{q} \otimes \mathfrak{q} \wedge \mathfrak{q} \longrightarrow \mathfrak{q} \\
\Phi: S \mathfrak{q} \otimes S \mathfrak{q} \longrightarrow \mathfrak{q}
\end{gathered}
$$

such that, if $u, v \in T \mathfrak{q}$ and $x, y, z, z^{\prime} \in \mathfrak{q}$ are chosen in a given basis,

$$
\begin{aligned}
\left\langle u\left[z, z^{\prime}\right] v ; x, y\right\rangle+\sum\left\langle u_{(1)}\left\langle u_{(2)} ; z, z^{\prime}\right\rangle v ; y, x\right\rangle & =0 \\
\sum_{(x, y, z)}\left(\langle u z ; x, y\rangle+\sum\left\langle u_{(1)} ;\left\langle u_{(2)} ; x, y\right\rangle, z\right\rangle\right) & =0
\end{aligned}
$$

where $\Delta u=\sum u_{(1)} \otimes u_{(2)}$ is the unshuffle coproduct on $T \mathfrak{q}$ (cocom).

- Geometrical explanation: if $\mathfrak{q}=T_{e} Q$ and ∇ is the flat connection on Q, can choose a basis of ∇-constant vector fields X, Y, Z, \ldots so that $\nabla_{X} Y=0$ and $R(X, Y) Z=0$, and set

$$
\left\langle Z_{1}, \ldots, Z_{m} ; X, Y\right\rangle=\nabla_{Z_{1}} \cdots \nabla_{Z_{m}} T(X, Y)
$$

(Φ omitted because more complicated). Then
Sabinin identities $=$ Bianchi identities relating torsion and curvature.

Smooth and (pro)algebraic loops on commutative algebras

Loop

Q smooth
or (pro)algebraic
$Q(A) \cong \underset{u C o m}{\operatorname{Hom}(R[Q], A)}$
convolution group

Sabinin algebra

$$
\begin{gathered}
\mathfrak{q}=T_{e} Q \cong \mathfrak{X}_{L}(Q) \\
\subset \operatorname{Prim} U \mathfrak{q} \\
u M a g \rightarrow \text { Sab: } A \mapsto A_{S} \\
\text { [Shestakov-Umirbaev 2002] }
\end{gathered}
$$

Function algebra

$$
R[Q]=\mathcal{O}(Q)
$$

alg: as + com
coalg: mag + codivisions Hopf-type duality

Enveloping algebra

$\xrightarrow[\text { primitives }]{\xrightarrow[\text { adjoint functors }]{\text { algebra ext. }}}$| $U \mathfrak{g} \cong R[G]^{*}$ |
| :---: |
| alg: mag + divisons
 coalg: cocom + coas |
| $\operatorname{Hom}\left(\mathfrak{q}, A_{S}\right) \cong \underset{u M a g}{\operatorname{Hom}}(U \mathfrak{q}, A)$ |

Loop of formal diffeomorphisms

Standard way to produce loops: invertibles in magmatic algebras or formal loops. Here, non standard one: modify coefficients [AF-Shestakov]

- Heisenberg loop: the set of Heisenberg matrices (or any triangular)

$$
H L_{3}(A)=\left\{\left.\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in A\right\}
$$

is a loop with matrix product even when A is a non-associative algebra (e.g. octonions). It is a group if A associative (e.g. quaternions).

Loop of formal diffeomorphisms

Standard way to produce loops: invertibles in magmatic algebras or formal loops. Here, non standard one: modify coefficients [AF-Shestakov]

- Heisenberg loop: the set of Heisenberg matrices (or any triangular)

$$
H L_{3}(A)=\left\{\left.\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in A\right\}
$$

is a loop with matrix product even when A is a non-associative algebra (e.g. octonions). It is a group if A associative (e.g. quaternions).

- Loop of formal diffeomorphisms: the set of formal diffeomorphism
with composition

$$
\operatorname{Diff}(A)=\left\{a=\sum_{n \geqslant 0} a_{n} \lambda^{n+1} \mid a_{0}=1, a_{n} \in A\right\}
$$

$$
a \circ b=\sum_{n \geqslant 0} \sum_{m=0}^{n} \sum_{k_{0}+\cdots+k_{m}=n-m} a_{m} b_{k_{0}} \cdots b_{k_{m}} \lambda^{n+1}
$$

is a loop if A is a unital associative algebra. It is right alternative and therefore power associative. It is a group if A is commutative.

Loop of formal diffeomorphisms

Standard way to produce loops: invertibles in magmatic algebras or formal loops. Here, non standard one: modify coefficients [AF-Shestakov]

- Heisenberg loop: the set of Heisenberg matrices (or any triangular)

$$
H L_{3}(A)=\left\{\left.\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in A\right\}
$$

is a loop with matrix product even when A is a non-associative algebra (e.g. octonions). It is a group if A associative (e.g. quaternions).

- Loop of formal diffeomorphisms: the set of formal diffeomorphism

$$
\operatorname{Diff}(A)=\left\{a=\sum_{n \geqslant 0} a_{n} \lambda^{n+1} \mid a_{0}=1, a_{n} \in A\right\},
$$

with composition

$$
a \circ b=\sum_{n \geqslant 0} \sum_{m=0}^{n} \sum_{k_{0}+\cdots+k_{m}=n-m} a_{m} b_{k_{0}} \cdots b_{k_{m}} \lambda^{n+1}
$$

is a loop if A is a unital associative algebra. It is right alternative and therefore power associative. It is a group if A is commutative.

- Loop of \mathcal{P}-expanded series: the same holds for series expanded over any operad \mathcal{P} with $\mathcal{P}(0)=0$ and $\mathcal{P}(1)=\{i d\}$ and coeff in A.

Proof that the free product \circledast is necessary

In the loop $\operatorname{Diff}(A)$, call b^{-1} the series as if A were commutative, then

$$
a / b=a \circ b^{-1} \quad \text { but } \quad b \backslash a \neq b^{-1} \circ a!
$$

Proof that the free product \circledast is necessary

In the loop $\operatorname{Diff}(A)$, call b^{-1} the series as if A were commutative, then

$$
a / b=a \circ b^{-1} \quad \text { but } \quad b \backslash a \neq b^{-1} \circ a!
$$

- In the series $b \backslash a$, the coefficient

$$
\begin{aligned}
(b \backslash a)_{3} & =a_{3}-\left(2 b_{1} a_{2}+b_{1} a_{1}^{2}\right)+\left(5 b_{1}^{2} a_{1}+b_{1} a_{1} b_{1}-3 b_{2} a_{1}\right) \\
& -\left(5 b_{1}^{3}-2 b_{1} b_{2}-3 b_{2} b_{1}+b_{3}\right)
\end{aligned}
$$

contains the term $b_{1} a_{1} b_{1}$ which can not be represented in the form $f(b) \otimes g(a) \in H_{\mathrm{FdB}}^{\mathrm{nc}} \otimes H_{\mathrm{FdB}}^{\mathrm{nc}}$, while clearly belongs to $H_{\mathrm{FdB}}^{\mathrm{nc}} \circledast H_{\mathrm{FdB}}^{\mathrm{nc}}$. This justifies the need to replace \otimes by \circledast in the definition of the coproduct of $R[\operatorname{Diff}(A)]$.

Proof that the free product \circledast is necessary

In the loop $\operatorname{Diff}(A)$, call b^{-1} the series as if A were commutative, then

$$
a / b=a \circ b^{-1} \quad \text { but } \quad b \backslash a \neq b^{-1} \circ a!
$$

- In the series $b \backslash a$, the coefficient

$$
\begin{aligned}
(b \backslash a)_{3} & =a_{3}-\left(2 b_{1} a_{2}+b_{1} a_{1}^{2}\right)+\left(5 b_{1}^{2} a_{1}+b_{1} a_{1} b_{1}-3 b_{2} a_{1}\right) \\
& -\left(5 b_{1}^{3}-2 b_{1} b_{2}-3 b_{2} b_{1}+b_{3}\right)
\end{aligned}
$$

contains the term $b_{1} a_{1} b_{1}$ which can not be represented in the form $f(b) \otimes g(a) \in H_{\mathrm{FdB}}^{\mathrm{nc}} \otimes H_{\mathrm{FdB}}^{\mathrm{nc}}$, while clearly belongs to $H_{\mathrm{FdB}}^{\mathrm{nc}} \circledast H_{\mathrm{FdB}}^{\mathrm{nc}}$. This justifies the need to replace \otimes by \circledast in the definition of the coproduct of $R[\operatorname{Diff}(A)]$.

- Moreover, the difference

$$
(a / b-b \backslash a)_{3}=b_{1}^{2} a_{1}-b_{1} a_{1} b_{1}
$$

shows why the non-comm. Faà di Bruno Hopf algebra exists: $\Delta_{\mathrm{FdB}}^{\mathrm{nc}}$ recovered from $\Delta_{\mathrm{FdB}}^{\circledast}$ by composing with the projection

$$
H_{\mathrm{FdB}}^{\mathrm{nc}} \circledast H_{\mathrm{FdB}}^{\mathrm{nc}} \rightarrow H_{\mathrm{FdB}}^{\mathrm{nc}} \otimes H_{\mathrm{FdB}}^{\mathrm{nc}}
$$

which identifies $b_{1} a_{1} b_{1}$ and $b_{1}^{2} a_{1}$. Then $a / b=b \backslash a$ and b^{-1} is a two-sided inverse.
(Pro)algebraic loops on non-commutative algebras [AF-IS]

Loop

Enveloping algebra

$$
\begin{gathered}
U \mathfrak{g} \cong R[G]^{*} \\
\text { alg: } \circledast \\
\text { mag }+ \text { divisons } \\
\text { coalg: coas }
\end{gathered}
$$

THANK YOU!

