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Stochastic quantisation equation

∂tϕ = 4ϕ− ϕ3 − Aϕ + ξ

ξ space-time white noise, i.e. centred Gaussian

Eξ(t , x)ξ(t ′, x ′) = δ(t − t ′)δ(x − x ′).

Spatial dimension d = 2 or d = 3.

A ∈ R real parameter.

Invariant measure, ϕ4 model, formally given by

µ ∝ exp
(
− 1

4

∫
ϕ4 + 2Aϕ2dx

)
ν(dϕ)

ν distribution of Gaussian free field.
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Aim of this talk

∂tϕ = 4ϕ− ϕ3 − Aϕ + ξ

Problem:

ξ very irregular⇒ ϕ distribution valued.

Renormalisation procedure (= removing infinite constants)

necessary when dealing with nonlinearity.

Local theory available:

d = 2 da Prato-Debussche ’03.

d = 3 Hairer ’14, Catellier-Chouk ’14.

Main result of this talk: Global theory

d = 2 existence and uniqueness on [0,∞)× R2.

d = 3 existence and uniqueness on [0,∞)× T3.
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Why is this interesting?

∂tϕ = 4ϕ− ϕ3 − Aϕ + ξ

Relation to QFT.

Interesting dynamics:
Arise as scaling limits (Presutti et al. 90s , Mourrat-W. ’14).

Similar properties to Ising model (has phase transition,

ergodicity properties...).

Method in a nutshell:

Only non-linear term has right sign – strong non-linear

damping term.

Difficulty: How to extract this in presence of random

distributions, infinite constants, etc.

This is a PDE talk.
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Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: solution of stochastic heat equation:

∂t = 4 + ξ.

Can construct 2 ; and 3 ; . All , , distributions in C0−.

Deterministic step: u = ϕ− .

∂tu = 4 u − ( + u)3

= 4 u −
(
u3 + 3 u2 + 3 u +

)
.

Multiplicative inequality: If α < 0 < β with α + β > 0∥∥τ u
∥∥
Cα .

∥∥τ∥∥Cα ∥∥u∥∥Cβ .
Short time existence, uniqueness via Picard iteration.
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Non-explosion on the torus I

Testing against up−1

1
p

(
‖ut‖pLp − ‖u0‖pp

)
+
∫ t

0

[
(p − 1)

∥∥∥up−2
s |∇us|2

∥∥∥
L1

+ ‖up+2
s ‖L1

]
ds

=
∫ t

0

〈
B(us, τs),up−1

s

〉
ds.

Use the sign of −u3 to get additional “good term”.

Bad terms: 〈
B,up−1

〉
=
〈
−3u2 − 3u − ,up−1

〉
.
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Non-explosion on the torus II

Control bad term:
〈

u2 ,up−1
〉

=
〈

up+1,
〉

.

1 Duality: ∣∣∣〈up+1,
〉∣∣∣ . ‖up+1‖Bα1,1 ‖ ‖B−α∞,∞ .

2 Interpolation:

‖up+1‖Bα1,1 . ‖up+1‖1−α
L1 ‖∇(up+1)‖αL1 + ‖up+1‖L1 .

sup0≤t≤T ‖ ‖B−α∞,∞ finite by construction. The terms ‖up+1‖1−α
L1

and ‖∇(up+1)‖αL1 are controlled by good terms.

Yields a priori bound on ‖u‖Lp , enough for non-explosion.
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Discussion d = 2

Solution theory on full space R2 via approximation on large

tori. Hardest part uniqueness.

We expect to be able to show tightness of orbits in Krylov

Bogoliubov scheme⇒ alternative construction of invariant

measure.

Cubic −ϕ : 3 : could be replaced by any Wick polynomial

with odd degree.

Related (but different) construction for PAM on R× R3 by

Hairer, Labbé ’15.
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The three dimensional case

Simple da Prato-Debussche trick does not work:

, , can still be constructed but lower regularity:

∈ C−
1
2−, ∈ C−1−, ∈ C−

3
2−. Equation for u = ϕ−

∂tu = 4 u −
(
u3 + 3 u2 + 3 u +

)
cannot be solved by Picard iteration.

Next order expansion u = ϕ− + gives

∂tu = 4 u −
(
u3 + 3 u2 + 3 u − 3 + . . .

)
.

Still cannot be solved, because of u. Expanding further

does not solve the problem.
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System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: u = v + w

(∂t −4)v = −3(v + w − )

<

,

(∂ −4)w = −(v + w)3 − 3(v + w − ) = + . . .

v ∈ C1− is the most irregular component of u.
< paraproduct.

w ∈ C
3
2− more regular remainder.

Term v = can be rewritten as

v = = −3
[
(v + w − ) <

]
= + com1(v ,w) =

= −3(v + w − )
=

+ com2(v + w) + com1(v ,w).

Comment: Very similar to Hairer’s regularity structures.
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Discussion of terms


(∂t −4)v = − 3(v + w − ) < ,

(∂t −4)w = − (v + w)3 − 3com1(v ,w) = − 3w =

+a2(v + w)2 + . . . .

v ∈ C−1− most irregular term, but r.h.s. linear.

−(v + w)3 good term! v term can be absorbed in w term.

com1(v ,w) = ∈ C
1
2− linear in v ,w . Time regularity of v ,w

needed to control this.

w = linear in w , but derivative or order 1+ needed to

control this.

a2(v + w)2 nonlinear bad term. a2 ∈ C−
1
2−.
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Sketch of strategy for non-explosion


(∂t −4)v = − 3(v + w − ) < ,

(∂t −4)w = − (v + w)3 − 3com1(v ,w) = − 3w =

+ a2(v + w)2 + . . . .

Step 1: Gronwall-type argument bounds v in terms of w .

Step 2: Use variation of constant to get bound on time

regularity for w in terms of r.h.s.

Step 3: Test equation for w against w and w3.

Does not yet yield self-consistent bound because of w =

which requires 1+ derivatives to control. We get∫ t
0 ‖w‖6L6 .

∫ t
0 ‖w‖2B1+2ε

2
ds + . . ..

Step 4: Gronwall type argument for
∫ t

0 ‖w‖2B1+2ε
2

ds.
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Summary and conclusion

Summary:

Solution theory for irregular stochastic PDE splits into

stochastic part (renormalisation) and deterministic analysis

of remainder.

Show how to get non-explosion for deterministic part via

PDE arguments.

Two dimensional torus simple argument via testing. Three

dimensional torus more complicated.

Outlook:

Theory on R3.

Establish bounds that are uniform in t ⇒ alternative

construction for stationary ϕ4
3 theory.

Method completely different from Glimm-Jaffe ’73.
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