Dynamical ¢3 on large scales

Jean-Christophe Mourrat Hendrik Weber

Mathematics Institute
University of Warwick

Paths to, from and in renormalization
Potsdam, 11 Feb. 2016



Stochastic quantisation equation

Brp=Dp—¢®—Ap+£

p.2



Stochastic quantisation equation

Brp=Dp—¢®—Ap+£

m ¢ space-time white noise, i.e. centred Gaussian
EE(t, X)E(Y, x) = o(t — ')d(x — X').
m Spatial dimension d =2 or d = 3.

m A € R real parameter.

p.2



Stochastic quantisation equation

Orp=Lp—¢®—Ap+¢

m ¢ space-time white noise, i.e. centred Gaussian
EE(t, X)E(Y, x) = o(t — ')d(x — X').
m Spatial dimension d =2 or d = 3.

m A € R real parameter.

Invariant measure, »* model, formally given by
1 4 2
1L X exp ( i 2Ap dx) v(dy)

v distribution of Gaussian free field.
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Aim of this talk
Op=LDp—¢° —Ap+¢

Problem:
m ¢ very irregular = ¢ distribution valued.
m Renormalisation procedure (= removing infinite constants)
necessary when dealing with nonlinearity.
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Aim of this talk
Op=LDp—¢° —Ap+¢

Problem:
m ¢ very irregular = ¢ distribution valued.
m Renormalisation procedure (= removing infinite constants)
necessary when dealing with nonlinearity.

Local theory available:
B d = 2 da Prato-Debussche ’03.
m d = 3 Hairer '14, Catellier-Chouk ’14.

Main result of this talk: Global theory

m Jd = 2 existence and uniqueness on [0, co) x R2.
m d = 3 existence and uniqueness on [0, oo) x T2,
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Op=Lp—¢®—Ap+¢

m Relation to QFT.
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Why is this interesting?

Oro=D0p— > —Ap+§

m Relation to QFT.
m Interesting dynamics:

m Arise as scaling limits (Presutti et al. 90s , Mourrat-W. '14).

m Similar properties to Ising model (has phase transition,
ergodicity properties...).
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Why is this interesting?

Oro=D0p— > —Ap+§

m Relation to QFT.
m Interesting dynamics:

m Arise as scaling limits (Presutti et al. 90s , Mourrat-W. '14).

m Similar properties to Ising model (has phase transition,
ergodicity properties...).

Method in a nutshell:
m Only non-linear term has right sign — strong non-linear
damping term.
m Difficulty: How to extract this in presence of random
distributions, infinite constants, etc.
m This is a PDE talk.
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Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: 1 solution of stochastic heat equation:

WA S

Can construct 12 ~ v and 13 ~ . All 1, < distributions in C°~.

p.5



Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: 1 solution of stochastic heat equation:

WA S

Can construct 12 ~ v and 13 ~ . All 1, < distributions in C°~.

Deterministic step: v = ¢ — 1.
ou=Au—(t+u)?

=Au— (BPB+31U7+3vu+v).

p.5



Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: 1 solution of stochastic heat equation:

WA S

Can construct 12 ~ v and 13 ~ . All 1, < distributions in C°~.

Deterministic step: v = ¢ — 1.
ou=Au—(t+u)?
=Au— (BPB+31U7+3vu+v).
Multiplicative inequality: If « < 0 < S witha + 3 > 0

I7 ullee S lIllce [lullcs-

p.5



Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: 1 solution of stochastic heat equation:

WA S

Can construct 12 ~ v and 13 ~ . All 1, < distributions in C°~.

Deterministic step: v = ¢ — 1.
ou=Au—(t+u)?
=Au— (BPB+31U7+3vu+v).
Multiplicative inequality: If « < 0 < S witha+ 3 > 0

|7 u

S

Ca ~

co |Ulles-

Short time existence, uniqueness via Picard iteration.
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Non-explosion on the torus |

Testing against uP~"

(1t~ leolg)s [ 0=

|Vus\

_ '/Ot <B(us,73), ") ds.

Use the sign of —u° to get additional “good term”.

o+ IUE) ] ds
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Non-explosion on the torus |

Testing against uP~"

(1t~ leolg)s [ 0=

|Vus\

- '/Ot <B(us,rs), usp_1> ds.

Use the sign of —u° to get additional “good term”.
Bad terms:

<Bup 1> <3ur—3uv v, uP~ ‘>.

o+ IUE2) ] ds
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Non-explosion on the torus |l

Control bad term: <U2T, uP*1> = <uP+1, T>.

Duality:

(0P 1)) 5 107 s, g
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Non-explosion on the torus |l

Control bad term: <U2T, uP*1> = <uP+1, T>.
Duality:

(P! D) < 1P e, M1l pe

Interpolation:

”Up+‘|

sy, SIPTI IV @Y + P
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Non-explosion on the torus |l

Control bad term: <U2T, uP*1> = <uP+1, T>.
Duality:

(0P 1)) 5 107 s, g

Interpolation:

1
luP

11— 1 1
By, S WP T IV WP + (WP

SUPo<¢<T [|'l| 5o finite by construction. The terms |uP+? ||1Lr“
and HV(UF’”)HCL*1 are controlled by good terms.

Yields a priori bound on |[u|[.», enough for non-explosion.
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Discussion d = 2

m Solution theory on full space R? via approximation on large
tori. Hardest part uniqueness.
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Discussion d = 2

m Solution theory on full space R? via approximation on large
tori. Hardest part uniqueness.

m We expect to be able to show tightness of orbits in Krylov
Bogoliubov scheme =- alternative construction of invariant
measure.

m Cubic —' 2 could be replaced by any Wick polynomial
with odd degree.

m Related (but different) construction for PAM on R x R? by
Hairer, Labbé *15.
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The three dimensional case

Simple da Prato-Debussche trick does not work:
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m 1, %, v can still be constructed but lower regularity:
tec i, vec T, wvec

2. Equation for u= ¢ —1
ou=Au—(B+3102+3vu+w)

cannot be solved by Picard iteration.
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tec i, vec T, wvec

2. Equation for u= ¢ —1
ou=Au—(B+3102+3vu+w)

cannot be solved by Picard iteration.

m Next order expansion u = — 1+ gives

ou=Au— (uB+3107+3vu—3Vv+...).
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The three dimensional case

Simple da Prato-Debussche trick does not work:

m 1, %, v can still be constructed but lower regularity:
tec i, vec T, wvec

2. Equation for u= ¢ —1
ou=Au—(B+3102+3vu+w)

cannot be solved by Picard iteration.

m Next order expansion u = — 1+ gives
ou=Au— (uB+3107+3vu—3Vv+...).

Still cannot be solved, because of vvu. Expanding further
does not solve the problem.
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System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: u=v +w
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m v c C'~ is the most irregular component of wv.
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m w € C2~ more regular remainder.
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m v c C'~ is the most irregular component of wv.
m © paraproduct.

mweC:z more regular remainder.

m Term v ©v can be rewritten as
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System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: u=v +w
(O — D) ==3v+w-Y)ov,

@—ANw=—-(v+w)P -3v+w—-V)ov+...

m v c C'~ is the most irregular component of wv.
m © paraproduct.

mweC:z more regular remainder.

m Term v ©v can be rewritten as

vov=-3[(v+w—-Y)oY]ov+com(v,w)ov

= —3(v+w — Y)Y+ coma(v + w) + comy (v, w).

Comment: Very similar to Hairer’s regularity structures.
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Or—A)v = =3(v+w-Yov,
O —O)w =  —(v+w)? —3comy(v,w)ov—3woeyv
+a(V+ w2+ ...
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Discussion of terms

Or—A)wv = =3v+w-Yov,
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+ar(V+ W) +. ...

m v € C'~ most irregular term, but r.h.s. linear.
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Discussion of terms

—3(v+w-Y)ov,
Or—N)w = —(v+w)® —3comy(v,w)ov —3wov
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+ar(V+ W) +. ...

m v € C~ '~ mostirregular term, but r.h.s. linear.
m —(v+ w) good term! v term can be absorbed in w term.
1 . . . .
m comy(v,w)ev e Cz linearin v, w. Time regularity of v, w

needed to control this.
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m v € C~ '~ mostirregular term, but r.h.s. linear.

m —(v+ w) good term! v term can be absorbed in w term.

m comy(v,w)ove Cz~ linear in v, w. Time regularity of v, w
needed to control this.

m wov linear in w, but derivative or order 1+ needed to

control this.
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Discussion of terms

Or—AN)wv = =3Vv+w-Yov,
Or—AN)w = —(v+w)® —3comy(v,w)ov —3wov

+ar(V+ W) +. ...

m v € C~ '~ mostirregular term, but r.h.s. linear.

m —(v+ w) good term! v term can be absorbed in w term.

m comy(v,w)ove Cz~ linear in v, w. Time regularity of v, w
needed to control this.

m wov linear in w, but derivative or order 1+ needed to
control this.

: i
m a,(v + w)? nonlinear bad term. a, € C7 2.
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Sketch of strategy for non-explosion
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Step 1: Gronwall-type argument bounds v in terms of w.
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Step 2: Use variation of constant to get bound on time
regularity for w in terms of r.h.s.
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Step 1: Gronwall-type argument bounds v in terms of w.
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Step 1: Gronwall-type argument bounds v in terms of w.
Step 2: Use variation of constant to get bound on time
regularity for w in terms of r.h.s.

Step 3: Test equation for w against w and w?.

Does not yet yield self-consistent bound because of w o+
which requires 1+ derivatives to control. We get

Jo I Wlis < Jo [ Wli3yeds + ...
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Step 1: Gronwall-type argument bounds v in terms of w.
Step 2: Use variation of constant to get bound on time
regularity for w in terms of r.h.s.

Step 3: Test equation for w against w and w?.

Does not yet yield self-consistent bound because of w o+
which requires 1+ derivatives to control. We get

Jo I Wlis < Jo [ Wli3yeds + ...

Step 4: Gronwall type argument for ,/g [ WH281+2E ds.
2
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Summary and conclusion

Summary:
m Solution theory for irregular stochastic PDE splits into
stochastic part (renormalisation) and deterministic analysis
of remainder.
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Summary and conclusion

Summary:

m Solution theory for irregular stochastic PDE splits into
stochastic part (renormalisation) and deterministic analysis
of remainder.

m Show how to get non-explosion for deterministic part via
PDE arguments.

m Two dimensional torus simple argument via testing. Three
dimensional torus more complicated.

Outlook:

m Theory on R3.

m Establish bounds that are uniform in t = alternative
construction for stationary 99‘3‘ theory.

Method completely different from Glimm-Jaffe '73.
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