Dynamical φ_{3}^{4} on large scales

Jean-Christophe Mourrat Hendrik Weber

Mathematics Institute
University of Warwick
Paths to, from and in renormalization
Potsdam, 11 Feb. 2016

Stochastic quantisation equation

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

Stochastic quantisation equation

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

■ ξ space-time white noise, i.e. centred Gaussian

$$
\mathbb{E} \xi(t, x) \xi\left(t^{\prime}, x^{\prime}\right)=\delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right)
$$

- Spatial dimension $d=2$ or $d=3$.

■ $A \in \mathbb{R}$ real parameter.

Stochastic quantisation equation

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

■ ξ space-time white noise, i.e. centred Gaussian

$$
\mathbb{E} \xi(t, x) \xi\left(t^{\prime}, x^{\prime}\right)=\delta\left(t-t^{\prime}\right) \delta\left(x-x^{\prime}\right)
$$

- Spatial dimension $d=2$ or $d=3$.

■ $A \in \mathbb{R}$ real parameter.
Invariant measure, φ^{4} model, formally given by

$$
\mu \propto \exp \left(-\frac{1}{4} \int \varphi^{4}+2 A \varphi^{2} d x\right) \nu(d \varphi)
$$

ν distribution of Gaussian free field.

Aim of this talk

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

Problem:

- ξ very irregular $\Rightarrow \varphi$ distribution valued.

■ Renormalisation procedure (= removing infinite constants) necessary when dealing with nonlinearity.

Aim of this talk

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

Problem:

- ξ very irregular $\Rightarrow \varphi$ distribution valued.

■ Renormalisation procedure (= removing infinite constants) necessary when dealing with nonlinearity.

Local theory available:
■ $d=2$ da Prato-Debussche '03.
■ $d=3$ Hairer '14, Catellier-Chouk '14.

Aim of this talk

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

Problem:

- ξ very irregular $\Rightarrow \varphi$ distribution valued.

■ Renormalisation procedure (= removing infinite constants) necessary when dealing with nonlinearity.

Local theory available:
■ $d=2$ da Prato-Debussche '03.
■ $d=3$ Hairer '14, Catellier-Chouk '14.
Main result of this talk: Global theory
$\square d=2$ existence and uniqueness on $[0, \infty) \times \mathbb{R}^{2}$.
$\square d=3$ existence and uniqueness on $[0, \infty) \times \mathbb{T}^{3}$.

Why is this interesting?

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

- Relation to QFT.

Why is this interesting?

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

- Relation to QFT.
- Interesting dynamics:

■ Arise as scaling limits (Presutti et al. 90s, Mourrat-W. '14).
■ Similar properties to Ising model (has phase transition, ergodicity properties...).

Why is this interesting?

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

- Relation to QFT.

■ Interesting dynamics:
■ Arise as scaling limits (Presutti et al. 90s, Mourrat-W. '14).
■ Similar properties to Ising model (has phase transition, ergodicity properties...).

Method in a nutshell:

■ Only non-linear term has right sign - strong non-linear damping term.

Why is this interesting?

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

- Relation to QFT.

■ Interesting dynamics:
■ Arise as scaling limits (Presutti et al. 90s, Mourrat-W. '14).
■ Similar properties to Ising model (has phase transition, ergodicity properties...).

Method in a nutshell:

■ Only non-linear term has right sign - strong non-linear damping term.
■ Difficulty: How to extract this in presence of random distributions, infinite constants, etc.

Why is this interesting?

$$
\partial_{t} \varphi=\triangle \varphi-\varphi^{3}-\boldsymbol{A} \varphi+\xi
$$

- Relation to QFT.

■ Interesting dynamics:
■ Arise as scaling limits (Presutti et al. 90s, Mourrat-W. '14).
■ Similar properties to Ising model (has phase transition, ergodicity properties...).

Method in a nutshell:

■ Only non-linear term has right sign - strong non-linear damping term.
■ Difficulty: How to extract this in presence of random distributions, infinite constants, etc.

- This is a PDE talk.

Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: ; solution of stochastic heat equation:

$$
\partial_{t} \uparrow=\Delta \boldsymbol{\imath}+\xi .
$$

Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: ; solution of stochastic heat equation:

$$
\partial_{t} \uparrow=\Delta t+\xi
$$

Can construct $\stackrel{\rightharpoonup}{2}^{2} \leadsto \vee$ and $\stackrel{\rightharpoonup}{3}^{3} \leadsto \stackrel{\rightharpoonup}{ }$. All $\cdot, \vee, \stackrel{\rightharpoonup}{ }$ distributions in \mathcal{C}^{0-}.

Deterministic step: $u=\varphi-1$.

$$
\begin{aligned}
\partial_{t} u & =\Delta u-(\uparrow+u)^{3} \\
& =\triangle u-\left(u^{3}+3 \cdot u^{2}+3 v u+v\right) .
\end{aligned}
$$

Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: ; solution of stochastic heat equation:

$$
\partial_{t} \boldsymbol{\uparrow}=\triangle \boldsymbol{t}+\xi .
$$

Deterministic step: $u=\varphi-1$.

$$
\begin{aligned}
\partial_{t} u & =\triangle u-(\uparrow+u)^{3} \\
& =\triangle u-\left(u^{3}+3 \cdot u^{2}+3 v u+*\right) .
\end{aligned}
$$

Multiplicative inequality: If $\alpha<0<\beta$ with $\alpha+\beta>0$

$$
\|\tau u\|_{\mathcal{C}^{\alpha}} \lesssim\|\tau\|_{\mathcal{C}^{\alpha}}\|u\|_{\mathcal{C}^{\beta}} .
$$

Two-dimensional case: Da Prato-Debussche 2003

Stochastic step: $\mathfrak{\text { solution of stochastic heat equation: }}$

$$
\partial_{t} \boldsymbol{\uparrow}=\triangle \boldsymbol{t}+\xi .
$$

Deterministic step: $u=\varphi-1$.

$$
\begin{aligned}
\partial_{t} u & =\triangle u-(\uparrow+u)^{3} \\
& =\triangle u-\left(u^{3}+3 \uparrow u^{2}+3 v u+*\right) .
\end{aligned}
$$

Multiplicative inequality: If $\alpha<0<\beta$ with $\alpha+\beta>0$

$$
\|\tau u\|_{\mathcal{C}^{\alpha}} \lesssim\|\tau\|_{\mathcal{C}^{\alpha}}\|u\|_{\mathcal{C}^{\beta}} .
$$

Short time existence, uniqueness via Picard iteration.

Non-explosion on the torus I

Testing against u^{p-1}

$$
\begin{aligned}
\frac{1}{p}\left(\left\|u_{t}\right\|_{L^{p}}^{p}-\left\|u_{0}\right\|_{p}^{p}\right)+\int_{0}^{t}[(p-1) & \left.\left\|u_{s}^{p-2}\left|\nabla u_{s}\right|^{2}\right\|_{L^{1}}+\left\|u_{s}^{p+2}\right\|_{L^{1}}\right] d s \\
& =\int_{0}^{t}\left\langle B\left(u_{s}, \tau_{s}\right), u_{s}^{p-1}\right\rangle d s
\end{aligned}
$$

Use the sign of $-u^{3}$ to get additional "good term".

Non-explosion on the torus I

Testing against u^{p-1}

$$
\begin{aligned}
\frac{1}{p}\left(\left\|u_{t}\right\|_{L^{p}}^{p}-\left\|u_{0}\right\|_{p}^{p}\right)+\int_{0}^{t}[(p-1) \| & \left.u_{s}^{p-2}\left|\nabla u_{s}\right|^{2}\left\|_{L^{1}}+\right\| u_{s}^{p+2} \|_{L^{1}}\right] d s \\
& =\int_{0}^{t}\left\langle B\left(u_{s}, \tau_{s}\right), u_{s}^{p-1}\right\rangle d s
\end{aligned}
$$

Use the sign of $-u^{3}$ to get additional "good term".
Bad terms:

$$
\left\langle B, u^{p-1}\right\rangle=\left\langle-3 u^{2},-3 u v-v, u^{p-1}\right\rangle .
$$

Non-explosion on the torus II

Control bad term: $\left\langle u^{2} \cdot, u^{p-1}\right\rangle=\left\langle u^{p+1}, ~ \uparrow\right\rangle$.
1 Duality:

$$
\left|\left\langle u^{p+1}, \cdot\right\rangle\right| \lesssim\left\|u^{p+1}\right\|_{\mathcal{B}_{1,1}^{\alpha}}\|\cdot\|_{\mathcal{B}_{\infty}^{-\infty}, \infty} .
$$

Non-explosion on the torus II

Control bad term: $\left\langle u^{2} \bullet, u^{p-1}\right\rangle=\left\langle u^{p+1}, \uparrow\right\rangle$.
1 Duality:

$$
\left|\left\langle u^{p+1}, \cdot\right\rangle\right| \lesssim\left\|u^{p+1}\right\|_{\mathcal{B}_{1,1}^{\alpha}}\|\cdot\|_{\mathcal{B}_{\infty, \infty}^{-\alpha}} .
$$

2 Interpolation:

$$
\left\|u^{p+1}\right\|_{\mathcal{B}_{1,1}^{\alpha}} \lesssim\left\|u^{p+1}\right\|_{L^{1}}^{1-\alpha}\left\|\nabla\left(u^{p+1}\right)\right\|_{L^{1}}^{\alpha}+\left\|u^{p+1}\right\|_{L^{1}}
$$

Non-explosion on the torus II

Control bad term: $\left\langle u^{2} \cdot, u^{p-1}\right\rangle=\left\langle u^{p+1}, ~ \uparrow\right\rangle$.
1 Duality:

$$
\left|\left\langle u^{p+1}, \cdot\right\rangle\right| \lesssim\left\|u^{p+1}\right\|_{\mathcal{B}_{1,1}^{\alpha}}\|\cdot\|_{\mathcal{B}_{\infty}^{-\infty}, \infty} .
$$

2 Interpolation:

$$
\left\|u^{p+1}\right\|_{\mathcal{B}_{1,1}^{\alpha}} \lesssim\left\|u^{p+1}\right\|_{L^{1}}^{1-\alpha}\left\|\nabla\left(u^{p+1}\right)\right\|_{L^{1}}^{\alpha}+\left\|u^{p+1}\right\|_{L^{1}}
$$

$\sup _{0 \leq t \leq T}\|\uparrow\|_{\mathcal{B}_{\infty}^{-\infty}, \infty}$ finite by construction. The terms $\left\|u^{p+1}\right\|_{L^{1}}^{1-\alpha}$ and $\left\|\nabla\left(u^{p+1}\right)\right\|_{L^{1}}^{\alpha}$ are controlled by good terms.

Yields a priori bound on $\|u\|_{L^{p}}$, enough for non-explosion.

Discussion $d=2$

■ Solution theory on full space \mathbb{R}^{2} via approximation on large tori. Hardest part uniqueness.

Discussion $d=2$

■ Solution theory on full space \mathbb{R}^{2} via approximation on large tori. Hardest part uniqueness.

■ We expect to be able to show tightness of orbits in Krylov Bogoliubov scheme \Rightarrow alternative construction of invariant measure.

Discussion $d=2$

■ Solution theory on full space \mathbb{R}^{2} via approximation on large tori. Hardest part uniqueness.
$■$ We expect to be able to show tightness of orbits in Krylov Bogoliubov scheme \Rightarrow alternative construction of invariant measure.

■ Cubic $-\varphi^{\text {3: }}$ could be replaced by any Wick polynomial with odd degree.

Discussion $d=2$

■ Solution theory on full space \mathbb{R}^{2} via approximation on large tori. Hardest part uniqueness.

■ We expect to be able to show tightness of orbits in Krylov Bogoliubov scheme \Rightarrow alternative construction of invariant measure.

■ Cubic $-\varphi^{\text {: 3: }}$ could be replaced by any Wick polynomial with odd degree.
■ Related (but different) construction for PAM on $\mathbb{R} \times \mathbb{R}^{3}$ by Hairer, Labbé '15.

The three dimensional case

Simple da Prato-Debussche trick does not work:

The three dimensional case

Simple da Prato-Debussche trick does not work:
$■ \cdot, \vee, \downarrow$ can still be constructed but lower regularity:
$\cdot \in \mathcal{C}^{-\frac{1}{2}-}, v \in \mathcal{C}^{-1-}, \boldsymbol{v} \in \mathcal{C}^{-\frac{3}{2}-}$. Equation for $u=\varphi-i$

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \cdot u^{2}+3 v u+*\right)
$$

cannot be solved by Picard iteration.

The three dimensional case

Simple da Prato-Debussche trick does not work:
■ \cdot, \vee, \downarrow can still be constructed but lower regularity:
$\cdot \in \mathcal{C}^{-\frac{1}{2}-}, v \in \mathcal{C}^{-1-}, \boldsymbol{v} \in \mathcal{C}^{-\frac{3}{2}-}$. Equation for $u=\varphi-i$

$$
\partial_{t} u=\triangle u-\left(u^{3}+3 \cdot u^{2}+3 v u+*\right)
$$

cannot be solved by Picard iteration.
■ Next order expansion $u=\varphi-\uparrow+\Psi$ gives

$$
\partial_{t} u=\Delta u-\left(u^{3}+3 \cdot u^{2}+3 v u-3 \psi v+\ldots\right)
$$

The three dimensional case

Simple da Prato-Debussche trick does not work:
■ \cdot, \vee, \downarrow can still be constructed but lower regularity:
$\cdot \in \mathcal{C}^{-\frac{1}{2}-}, v \in \mathcal{C}^{-1-}, \boldsymbol{v} \in \mathcal{C}^{-\frac{3}{2}-}$. Equation for $u=\varphi-i$

$$
\partial_{t} u=\triangle u-\left(u^{3}+3 \cdot u^{2}+3 v u+*\right)
$$

cannot be solved by Picard iteration.
■ Next order expansion $u=\varphi-\uparrow+\Psi$ gives

$$
\partial_{t} u=\triangle u-\left(u^{3}+3 \cdot u^{2}+3 v u-3 \mathscr{\psi} v+\ldots\right)
$$

Still cannot be solved, because of $v u$. Expanding further does not solve the problem.

System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: $u=v+w$

System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\left(\partial_{t}-\triangle\right) v=-3(v+w-\Psi) \quad v
$$

■ $v \in \mathcal{C}^{1-}$ is the most irregular component of u.

System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\left(\partial_{t}-\triangle\right) v=-3(v+w-\Psi) \odot v
$$

$\square v \in \mathcal{C}^{1-}$ is the most irregular component of u.
■ - paraproduct.

System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{aligned}
& \left(\partial_{t}-\triangle\right) v=-3(v+w-\Psi) \oplus v \\
& (\partial-\triangle) w=-(v+w)^{3}-3(v+w-\Psi) \ominus v+\ldots
\end{aligned}
$$

■ $v \in \mathcal{C}^{1-}$ is the most irregular component of u.
■ \otimes paraproduct.
■ $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.

System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{aligned}
& \left(\partial_{t}-\triangle\right) v=-3(v+w-\Psi) \odot V \\
& (\partial-\triangle) w=-(v+w)^{3}-3(v+w-\Psi) \odot v+\ldots
\end{aligned}
$$

$\square v \in \mathcal{C}^{1-}$ is the most irregular component of u.

- \bullet paraproduct.
- $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.
- Term $v \oplus v$ can be rewritten as

$$
\begin{aligned}
v \ominus v & =-3[(v+w-\Psi) \odot Y] \odot v+\operatorname{com}_{1}(v, w) \Theta v \\
& =-3(v+w-\Psi) \otimes+\operatorname{com}_{2}(v+w)+\operatorname{com}_{1}(v, w) .
\end{aligned}
$$

System of equations with paraproducts

Catellier-Chouk: Split up remainder equation: $u=v+w$

$$
\begin{aligned}
& \left(\partial_{t}-\triangle\right) v=-3(v+w-\Psi) \oplus V \\
& (\partial-\triangle) w=-(v+w)^{3}-3(v+w-\Psi) \odot V+\ldots
\end{aligned}
$$

■ $v \in \mathcal{C}^{1-}$ is the most irregular component of u.

- \bullet paraproduct.
- $w \in \mathcal{C}^{\frac{3}{2}-}$ more regular remainder.

■ Term $v \odot v$ can be rewritten as

$$
\begin{aligned}
v \ominus v & =-3[(v+w-\Psi) \odot Y] \odot v+\operatorname{com}_{1}(v, w) \Theta v \\
& =-3(v+w-\Psi) \otimes+\operatorname{com}_{2}(v+w)+\operatorname{com}_{1}(v, w) .
\end{aligned}
$$

Comment: Very similar to Hairer's regularity structures.

Discussion of terms

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \odot v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \odot v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

Discussion of terms

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \odot v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

■ $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.

Discussion of terms

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \odot v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \odot v-3 w \odot v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

■ $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
■ $-(v+w)^{3}$ good term! v term can be absorbed in w term.

Discussion of terms

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

■ $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
■ $-(v+w)^{3}$ good term! v term can be absorbed in w term.

- $\operatorname{com}_{1}(v, w) \oplus v \in \mathcal{C}^{\frac{1}{2}-}$ linear in v, w. Time regularity of v, w needed to control this.

Discussion of terms

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\dot{Y}) \odot v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots .
\end{aligned}\right.
$$

■ $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
$■-(v+w)^{3}$ good term! v term can be absorbed in w term.
■ $\operatorname{com}_{1}(v, w) \oplus v \in \mathcal{C}^{\frac{1}{2}-}$ linear in v, w. Time regularity of v, w needed to control this.

■ $w \ominus v$ linear in w, but derivative or order 1+ needed to control this.

Discussion of terms

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\dot{Y}) \odot v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots .
\end{aligned}\right.
$$

■ $v \in \mathcal{C}^{-1-}$ most irregular term, but r.h.s. linear.
$■-(v+w)^{3}$ good term! v term can be absorbed in w term.

- $\operatorname{com}_{1}(v, w) \oplus v \in \mathcal{C}^{\frac{1}{2}-}$ linear in v, w. Time regularity of v, w needed to control this.

■ $w \ominus v$ linear in w, but derivative or order 1+ needed to control this.

- $a_{2}(v+w)^{2}$ nonlinear bad term. $a_{2} \in \mathcal{C}^{-\frac{1}{2}-}$.

Sketch of strategy for non-explosion

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots .
\end{aligned}\right.
$$

Sketch of strategy for non-explosion

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

Step 1: Gronwall-type argument bounds v in terms of w.

Sketch of strategy for non-explosion

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

Step 1: Gronwall-type argument bounds v in terms of w.
Step 2: Use variation of constant to get bound on time regularity for w in terms of r.h.s.

Sketch of strategy for non-explosion

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

Step 1: Gronwall-type argument bounds v in terms of w.
Step 2: Use variation of constant to get bound on time regularity for w in terms of r.h.s.
Step 3: Test equation for w against w and w^{3}.

Sketch of strategy for non-explosion

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\dot{Y}) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \oplus v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

Step 1: Gronwall-type argument bounds v in terms of w.
Step 2: Use variation of constant to get bound on time regularity for w in terms of r.h.s.
Step 3: Test equation for w against w and w^{3}.
Does not yet yield self-consistent bound because of $w \odot v$ which requires $1+$ derivatives to control. We get $\int_{0}^{t}\|w\|_{L^{6}}^{6} \lesssim \int_{0}^{t}\|w\|_{\mathcal{B}_{2}^{1+2 \varepsilon}}^{2} d s+\ldots$.

Sketch of strategy for non-explosion

$$
\left\{\begin{aligned}
\left(\partial_{t}-\triangle\right) v= & -3(v+w-\Psi) \oplus v \\
\left(\partial_{t}-\triangle\right) w= & -(v+w)^{3}-3 \operatorname{com}_{1}(v, w) \oplus v-3 w \odot v \\
& +a_{2}(v+w)^{2}+\ldots
\end{aligned}\right.
$$

Step 1: Gronwall-type argument bounds v in terms of w.
Step 2: Use variation of constant to get bound on time regularity for w in terms of r.h.s.
Step 3: Test equation for w against w and w^{3}.
Does not yet yield self-consistent bound because of $w \odot v$ which requires $1+$ derivatives to control. We get
$\int_{0}^{t}\|w\|_{L^{6}}^{6} \lesssim \int_{0}^{t}\|w\|_{\mathcal{B}_{2}^{1+2 \varepsilon}}^{2} d s+\ldots$.
Step 4: Gronwall type argument for $\int_{0}^{t}\|w\|_{\mathcal{B}_{2}^{1+2 \varepsilon}}^{2} d s$.

Summary and conclusion

Summary:

■ Solution theory for irregular stochastic PDE splits into stochastic part (renormalisation) and deterministic analysis of remainder.

Summary and conclusion

Summary:

■ Solution theory for irregular stochastic PDE splits into stochastic part (renormalisation) and deterministic analysis of remainder.
■ Show how to get non-explosion for deterministic part via PDE arguments.

Summary and conclusion

Summary:

■ Solution theory for irregular stochastic PDE splits into stochastic part (renormalisation) and deterministic analysis of remainder.
■ Show how to get non-explosion for deterministic part via PDE arguments.
■ Two dimensional torus simple argument via testing. Three dimensional torus more complicated.

Summary and conclusion

Summary:

■ Solution theory for irregular stochastic PDE splits into stochastic part (renormalisation) and deterministic analysis of remainder.
■ Show how to get non-explosion for deterministic part via PDE arguments.
■ Two dimensional torus simple argument via testing. Three dimensional torus more complicated.

Outlook:

■ Theory on \mathbb{R}^{3}.

Summary and conclusion

Summary:

- Solution theory for irregular stochastic PDE splits into stochastic part (renormalisation) and deterministic analysis of remainder.
■ Show how to get non-explosion for deterministic part via PDE arguments.
■ Two dimensional torus simple argument via testing. Three dimensional torus more complicated.

Outlook:

■ Theory on \mathbb{R}^{3}.
■ Establish bounds that are uniform in $t \Rightarrow$ alternative construction for stationary φ_{3}^{4} theory. Method completely different from Glimm-Jaffe '73.

