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Notations

For x = (x1, . . . , xd) ∈ Rd and k = (k1, . . . , kd) ∈ Nd we write

xk :=

d∏
i=1

xki
i ∈ R.

X = (X1, . . . ,Xd) denotes a variable, and Xk the abstract monomial

Xk :=

d∏
i=1

Xki
i .

A monomial is a function ΠxXk : Rd → R

ΠxXk(y) := (y− x)k.
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Taylor expansions

The Taylor expansion of the function y 7→ yk around the fixed base
point x is

yk = (y− x + x)k =

k∑
i=0

(
k
i

)
xk−i(y− x)i

=

k∑
i=0

(y− x)i

i!
∂iyk

∂yi

∣∣∣∣
y=x

,
∂iyk

∂yi

∣∣∣∣
y=x

=
k!

(k − i)!
xk−i.

Therefore the abstract Taylor expansion of y 7→ yk around x is

U(x) :=

k∑
i=0

(
k
i

)
xk−i Xi = (X + x)k ∈ R[X].

Moreover we recover the function y 7→ yk

yk = [ΠxU(x)] (y).
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Change of the base point

If we set, for x, z ∈ Rd, Γxz : R[X] 7→ R[X]

ΓxzXk = (X + x− z)k =

k∑
i=0

(
k
i

)
(x− z)k−iXi,

then it is easy to see that

U(x) = ΓxzU(z).

Indeed

U(x) = (X + x)k = (X + z + x− z)k = ΓxzU(z).
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Change of the base point

The operator

ΓxzXk = (X + x− z)k =

k∑
i=0

(
k
i

)
(x− z)k−iXi.

gives a rule to transform a classical Taylor expansion centered at z of a
fixed polynomial into one centered at x.

This definition satisfies the simple properties

Πz = ΠxΓxz, Γxx = Id, ΓxyΓyz = Γxz,

deg(ΓxzXk − Xk) < k ‖ΓxzXk − Xk‖i ≤ C‖x− z‖k−i.
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Classical polynomials

Given a global function y 7→ yk, we can associate to each x its Taylor
expansion around x

U(x) = (X + x)k = Γx0 Xk = Γx0U(0).

By linearity, we obtain that U 7→ R[X] is the Taylor expansion of a
(classical) polynomial P(·) if and only if

U(x)− ΓxzU(z) ≡ 0

and in this case

U(z) =

deg(P)∑
i=0

P(i)(z)
i!

Xi.

In particular for all x, y, z

Πx U(x)(y) ≡ Πz U(z)(y) = P(y).
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Hölder functions

A function u : Rd → R is said to be of class Ck+β if it is everywhere
k-times differentiable with (bounded) derivatives and the k-th derivative
is β-Hölder continuous.

In fact this is equivalent to requiring that for all x there exists a
polynomial Px(·) of degree k such that

|u(y)− Px(y)| ≤ C|y− x|k+β (1)

and in this case necessarily

Px(y) =

k∑
i=0

u(i)(x)

i!
(y− x)i = Πx

[
k∑

i=0

u(i)(x)

i!
Xi

]
(y).
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Hölder functions

If we define

U(x) =

k∑
i=0

u(i)(x)

i!
Xi ∈ R[X],

then we obtain

U(x)− Γxz U(z) =

k∑
i=0

Xi

i!

u(i)(x)−
k−i∑
j=0

u(i+j)(z)
j!

(x− z)j


and in particular u ∈ Ck+β iff for all i ≤ k

‖U(x)− Γxz U(z)‖i ≤ C‖x− z‖k+β−i.

We say that U ∈ Dγ if U : Rd → R[X] takes values in the span of
monomials with degree strictly less than γ and for all i < γ

‖U(x)− Γxz U(z)‖i ≤ C‖x− z‖γ−i.
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Differential equations

This gives a characterization of Hölder functions u in terms of their
Taylor sum U and the operators Γxz. In general

u(x) = Πx U(x)(x), (reconstruction)

u(y)−Πx U(x)(y) 6= 0, Πx U(x) 6= ΠzU(z).

For instance, if d = 1 then the ODE with α-Hölder coefficient
b : R→ R

du
dx

= b(u(x)), u(0) = u0 ∈ R

can be coded by U ∈ D1+α where

U(x) = u(x) + b(u(x)) X, x ∈ R.
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Generalized Taylor expansions

Regularity Structures are a far-reaching generalization of the previous
construction.

We want to add new monomials representing random distributions and
to solve stochastic (partial) differential equations.

For instance, let ξ = ξ(x) is a space-time white noise on Rd, i.e. a
centered Gaussian field such that

E(ξ(x)ξ(y)) = δ(x− y), x, y ∈ Rd.

A concrete realisation: for all ψ ∈ L2(Rd−1) and t ∈ R∫
[0,t]×Rd−1

ψ(x) ξ(x) dx :=
∑

k

Bk(t) 〈ek, ψ〉,

where (Bk)k is an IID sequence of Brownian motions and (ek)k is a
complete orthonormal system in L2(Rd−1).
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The stochastic heat equation

Let v : Rd → R solve the heat equation with external forcing

∂tv = ∆v + ξ, x ∈ Rd,

where

∂t = ∂x1 , ∆ :=

d∑
i=2

∂2
xi
.

The properties of this ”process” depend heavily on the dimension, since

Var(v(x)) =

∫ t

0

Cd

s
d−1

2

ds


< +∞, d = 2

= +∞, d ≥ 3

so that for d ≥ 3 the solution is a random distribution.
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Singular stochastic PDEs

If ∇ = (∂xi , i = 2, . . . , d) then for a class of equations

∂tu = ∆u + F(u,∇u, ξ), x ∈ R× Rd−1

(KPZ) ∂tu = ∆u + (∇u)2 + ξ, x ∈ R× R,

(gKPZ) ∂tu = ∆u + f (u) (∇u)2 + g(u) ξ, x ∈ R× R,

(PAM) ∂tu = ∆u + u ξ, x ∈ R× R2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, x ∈ R× R3.

Even for polynomial non-linearities, we do not know how to properly
define products of (random) distributions.

This is where infinities arise (see below).

Lorenzo Zambotti February 2016, Potsdam



Singular stochastic PDEs

If ∇ = (∂xi , i = 2, . . . , d) then for a class of equations

∂tu = ∆u + F(u,∇u, ξ), x ∈ R× Rd−1

(KPZ) ∂tu = ∆u + (∇u)2 + ξ, x ∈ R× R,

(gKPZ) ∂tu = ∆u + f (u) (∇u)2 + g(u) ξ, x ∈ R× R,

(PAM) ∂tu = ∆u + u ξ, x ∈ R× R2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, x ∈ R× R3.

Even for polynomial non-linearities, we do not know how to properly
define products of (random) distributions.

This is where infinities arise (see below).

Lorenzo Zambotti February 2016, Potsdam



Singular stochastic PDEs

If ∇ = (∂xi , i = 2, . . . , d) then for a class of equations

∂tu = ∆u + F(u,∇u, ξ), x ∈ R× Rd−1

(KPZ) ∂tu = ∆u + (∇u)2 + ξ, x ∈ R× R,

(gKPZ) ∂tu = ∆u + f (u) (∇u)2 + g(u) ξ, x ∈ R× R,

(PAM) ∂tu = ∆u + u ξ, x ∈ R× R2,

(Φ4
3) ∂tu = ∆u− u3 + ξ, x ∈ R× R3.

Even for polynomial non-linearities, we do not know how to properly
define products of (random) distributions.

This is where infinities arise (see below).
Lorenzo Zambotti February 2016, Potsdam



Some notations: the heat kernel

Let d ≥ 2.

For x = (x1, . . . , xd) ∈ Rd we define the heat kernel G : Rd 7→ R

G(x) = 1(x1>0)
1√

2πx1
exp

(
−

x2
2 + · · ·+ x2

d
2x1

)
.

Given k = (k1, . . . , kd) ∈ Nd we define

G(k)(x) =
∂k1

∂xk1
1

· · · ∂
kd

∂xkd
d

G(x).
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Parabolic scaling

The heat kernel has a very important scaling property:

G(δ2x1, δx2, . . . , δxd) =
1
δ

G(x), δ > 0.

This motivates the following definitions:

‖x− y‖s := |x1 − y1|1/2 + |x2 − y2|+ · · ·+ |xd − yd|, x ∈ Rd,

|k|s := 2k1 + k2 + · · ·+ kd, k ∈ N2.
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Generalized Monomials

We want to introduce new monomials which allow to approximate u
locally.

We need a monomial for the noise : we introduce

Ξ, ΠxΞ(y) := ξ(y).

Remember that ΠxXk(y) = (y− x)k and

|ΠxXk(y)| ≤ ‖x− y‖|k|ss .

Then we see that the scaled degree |k|s of Xk has both an algebraic and
an analytic interpretation.

We need a similar concept for all (abstract) monomials.
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Abstract Monomials

We define the following family T of symbols (trees):
I 1,X ∈ {X1, . . . ,Xd},Ξ ∈ T
I if τ1, . . . , τn ∈ T then τ1 · · · τn ∈ T (commutative and associative

product)
I if τ ∈ T then I(τ) ∈ T and Ik(τ) ∈ T (formal convolution with

the heat kernel differentiated k times)

Examples: I(Ξ), XnΞIk(Ξ), I((I1(Ξ))2)

To a symbol τ we associate a real number |τ | called its homogeneity:
|Ξ| = α < −(d + 1)/2, |X1| = 2, |X2| = 1, |1| = 0

|τ1 · · · τn| = |τ1|+ · · ·+ |τn|, |Ik(τ)| = |τ |+ 2− |k|s.

LetH be the space of linear combinations of elements in T .

α < 0 is chosen so that ξ is a.s. a distribution of order at least α.
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The Π operators

We fix a bounded smooth function ξ and define recursively functions of
y ∈ Rd

Π 1(y) = 1, Π X(y) = y, Π Ξ(y) = ξ(y),

Π(τ1 · · · τn)(y) =

n∏
i=1

Πτi(y),

Π Ik(τ)(y) = (G(k) ∗Πτ)(y).

These are global functions which include y 7→ yk.
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The Πx operators

We define recursively for τ ∈ T continuous generalized monomials
Πxτ around the base point x

Πx1(y) = 1, ΠxX(y) =(y− x), ΠxΞ(y) = ξ(y),

Πx(τ1 · · · τn)(y) =

n∏
i=1

Πxτi(y),

ΠxIk(τ)(y) = (G(k) ∗Πxτ)(y)−
|Ik(τ)|∑

i=0

(y− x)i

i!
(G(i+k) ∗Πxτ)(x).

Then |τ | is the analytical homogeneity of the monomial Πxτ :

|Πxτ(y)| ≤ C‖y− x‖|τ |s .

Beware: if ξ is white noise then products are (very) problematic and
will have to be renormalized.
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Regularity structures

Let us give an (almost) complete definition of a regularity structure T
[Hairer ’14]: this is a triplet (A,H,G) where

I A ⊂ R is an index set which contains 0 and which is locally finite
and bounded below (the set of possible homogeneities)

I H = ⊕α∈AHα is a graded vector space
I G, the Structure group, acts onH in such a way that for all Γ ∈ G,
α ∈ A and a ∈ Hα

Γa− a ∈
⊕
β<α

Hβ.

G is one of the two main groups in the theory; its algebraic structure
will be discussed in detail by Yvain.
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General models

A model of T is given by a couple (Πx,Γxz) such that

1. for all x, Πx : T 7→ S ′(Rd) and for all ϕ ∈ C∞c (Rd)

|Πxτ(ϕx,δ)| ≤ Cδ|τ |,

where ϕx,δ(z) :=
1

δd+1 ϕ
(
δ−2(z1 − x1), δ−1(zi − xi), i ≥ 2

)
.

2. Γ : Rd × Rd → G is such that for all x, y, z

Γxx = Id, ΓxyΓyz = Γxz, |Γxzτ − τ | < |τ |

‖Γxzτ − τ‖` ≤ C‖z− x‖|τ |−`, ` < |τ |.

3. for all x, z: Πz = ΠxΓxz.
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Functional norm

In the general case, for γ > 0 we say that U ∈ Dγ if U takes values in
the linear span of the symbols with homogeneity < γ and for all β < γ

‖U(x)− ΓxyU(y)‖β ≤ CU‖x− y‖γ−βs

This is a notion of Hölder regularity with respect to generalized
monomials.

If U takes values in sums of Xk, then the definition is equivalent to the
classical Cγ-regularity (for γ /∈ N).

This definition is inspired by Massimiliano Gubinelli’s theory of
controlled rough paths.

We want to solve our SPDEs with some abstract fixed point in one of
these Banach spaces.
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The reconstruction theorem

Our starting problem was to associate to a function u a Taylor
expansion U(x) around each point x.

What about the inverse problem? Given such x 7→ U(x) ∈ H, can we
find a function u with this expansion up to a remainder?

This is the content of the Reconstruction Theorem:

For all γ > 0 there exists a unique operatorR : Dγ 7→ S ′(Rd) s.t.

|RU(y)−ΠxU(x)(y)| ≤ CU‖x− y‖γs (2)

for all x, y, or, more precisely, such that for δ > 0

|RU(ϕx,δ)−ΠxU(x)(ϕx,δ)| ≤ CUδ
γ .

Note that (2) is the exact analog of (1): a Taylor expansion of u := RU.
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Regularisation of SPDEs

Let ξε = ρε ∗ ξ a regularisation of ξ and let uε solve

∂tuε = ∆uε + F(uε,∇uε, ξε), x ∈ Rd.

What happens as ε→ 0 ?

If we fix a Banach space of generalised functionsH−α on Rd such that
ξ ∈ H−α a.s. for some fixed α > 0, then the map ξε 7→ uε is not
continuous.

We need a topology such that
I the map ξε 7→ uε is continuous
I ξε → ξ as ε→ 0.

It turns out that the correct topology is, roughly speaking, the
convergence of (Πε

x,Γ
ε
xz): this is a purely analytic statement.

The probabilistic statement is: ”this works for ξ the white noise”.
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Convergence

Let us try the monomial Ξ I(Ξ). Then (for simplicity: Π instead of Πx)

Tε := ΠεΞ I(Ξ)(ϕ) =

∫
ϕ(y) ξε(y) (G ∗ ξε)(y) dy

with ϕ ∈ C∞c (Rd). Now

E[Tε] =

∫
ϕ(y)E[ξε(G ∗ ξε)](y) dy =

∫
ϕ(y) ρε ∗ G ∗ ρε(0) dy

and
lim
ε→0

Var[Tε] =

∫
ϕ2(y) G2(y− x) dy dx < +∞.

However ρε ∗ G ∗ ρε(0)→ +∞ as ε→ 0: a first example of the
famous infinities which need renormalization. In this case

ξε G ∗ ξε − E[ξε G ∗ ξε] = ξε G ∗ ξε − ρε ∗ G ∗ ρε(0).
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Products of (random) distributions

Diverging terms include

ξε(G ∗ ξε), (∂xG ∗ ξε)2, ξε G ∗ (ξε G ∗ ξε), . . .

They all tend to products of (random) distributions.

Indeed, the problems come from the (canonical) choice of imposing
multiplicativity of the Πε

x operator in (19):

Πε
x(τ1 · · · τn)(y) =

n∏
i=1

Πε
xτi(y).

This formula needs to be modified:

Π̂ε
x(τ1 · · · τn)(y) =

n∏
i=1

Π̂ε
xτi(y) + ?

(we’ll discuss later more precisely the ?).
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Renormalization of the model

It is necessary to modify (Πε
x,Γ

ε
xz). But how?

A simple Ansatz is to consider suitable linear operators Mε : H → H
and to look for (ΠMε

x ,ΓMε
xz ) such that

ΠMετ = ΠεMετ

(note: Π not Πx) in such a way that (ΠMε
x ,ΓMε

xz ) converges as ε→ 0.

Remember: must satisfy Πz = ΠxΓxz.

Theorem
There exists a finite-dimensional Lie group R acting onH and
deterministic Mε ∈ R such that the only model (ΠMε

x ,ΓMε
xz ) satisfying

ΠMετ = ΠεMετ

converges as ε→ 0.
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Regularisation

Let ξε = ρε ∗ ξ a regularisation of the white noise ξ and let uε solve

∂tuε = ∆uε + F(uε,∇uε, ξε), x ∈ R× Rd−1.

What happens as ε→ 0 ?

I We introduce a model (Πε
x,Γ

ε
xz) as in (19)

I we associate to uε a Taylor expansion Uε

I we show that Uε solves a fixed point problem in some Dγ(ε)

I we hope that everything converges as ε→ 0.

Technical remark: we can restrict all models to ⊕β<γHβ , thus to a
finite number of generalized monomials.

One of the main results of the Regularity Structures theory is that
I u is a continuous functional of (Πx,Γxz) (see below).

However, does (Πε
x,Γ

ε
xz) converge as ε→ 0?
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The solution map

The analytic part of the theory constructs a solution map

Φ :M→ S ′(Rd)

whereM is the space of possible (Πx,Γxz)’s of T , such that
I Φ is continuous
I if ξ ∈ C∞(Rd) and u = Φ(Πx,Γxz), see (19), then

∂tu = ∆u + F(u,∇u, ξ).

I in particular if uε = Φ(Πε
x,Γ

ε
xz) with ξε := ρε ∗ ξ then

∂tuε = ∆uε + F(uε,∇uε, ξε).

Now, if ûε := Φ(ΠMε
x ,ΓMε

xz ), does ûε satisfy an equation?
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The renormalized equation

Amazingly, ûε satisfies

∂tûε = ∆ûε + Fε(ûε,∇ûε, ξε)

where Fε is an explicit, deterministic modification of F.

Examples:

(KPZ) ∂tûε = ∆ûε + (∇ûε)2−Cε + ξε, x ∈ R× R,

(gKPZ) ∂tûε = ∆ûε + f (ûε)
(
(∇ûε)2−Cε

)
+hε(ûε) + g(ûε)

(
ξε−Cε g′(ûε)

)
, x ∈ R× R,

(PAM) ∂tûε = ∆ûε + ûε ξε−Cε, x ∈ R× R2,

(Φ4
3) ∂tûε = ∆ûε − û3

ε +(C1
ε + C2

ε) ûε + ξε, x ∈ R× R3.
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ε) ûε + ξε, x ∈ R× R3.

Lorenzo Zambotti February 2016, Potsdam



The renormalized solution

The renormalization group R acts on the possible limits (Π̂x, Γ̂xz) and
therefore on the possible renormalized solutions û := Φ(Π̂x, Γ̂xz).

Therefore the renormalized solution is neither unique nor canonical.
One can define for instance

ξε(G ∗ ξε) 7→ ξε(G ∗ ξε)− E[ξε(G ∗ ξε)] + c

for any constant c ∈ R and this still defines a good limit.

Questions:
I does û satisfy an equation ?

Answer:
I yes and no...

Û satisfy an equation in Dγ , û satisfies an equation with renormalized
products.
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therefore on the possible renormalized solutions û := Φ(Π̂x, Γ̂xz).

Therefore the renormalized solution is neither unique nor canonical.
One can define for instance

ξε(G ∗ ξε) 7→ ξε(G ∗ ξε)− E[ξε(G ∗ ξε)] + c

for any constant c ∈ R and this still defines a good limit.

Questions:
I does û satisfy an equation ?

Answer:
I yes and no...

Û satisfy an equation in Dγ , û satisfies an equation with renormalized
products.
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Factorisation

The study of our singular SPDE

∂tu = ∆u + F(u,∇u, ξ)

factorises into three different problems:

I (Analytic step) Construction and continuity of the solution map
Φ :M→ S ′(Rd), whereM is the space of models.

I (Algebraic step) Construction of the renormalization group R.
I (Probabilistic step) Convergence of the modified model

(ΠMε
x ,ΓMε

xz ) as ε→ 0 to anM-valued random variable (Π̂x, Γ̂xz)
that we call the renormalized model.
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Graph representation

Recall that, by the definition (18), the Πε’s are polynomial functions of
ξε.

We have now N random variables P1(ξε), . . . ,PN(ξε), polynomial
functions of ξε.

More precisely, for a fixed ϕ ∈ C∞c we consider the random variables

Zi :=

∫
Rd
ϕ(z) Pi(ξε(z)) dz, i = 1, . . . ,N.

To each such random variable we associate a rooted tree Ti.

Every integration variable in Zi is a vertex in Ti.

Every integral kernel in Zi is an edge in Ti.
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Examples

Ξ −→
∫
ϕ(z) ξε(z) dz =

∫
ϕ(z) ρε(z− x) ξ(dx) dz −→

z

x

I(Ξ) −→
∫
ϕ(z) G ∗ ξε(z) dz −→

z

x y

ΞI(Ξ) −→
∫
ϕ(z) ξε(z) G ∗ ξε(z) dz −→

z

x y2

y1
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Examples

ΞI(ΞI(Ξ)) ΞI(Ξ)2
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Feynman diagrams

Do you remember? We noticed that ξε G ∗ ξε can be renormalised by
subtracting its expectation:

ξε G ∗ ξε − E[ξε G ∗ ξε] = ξε G ∗ ξε − ρε ∗ G ∗ ρε(0).

In terms of graphs (Feynman diagrams), this can be written as

−

Note that graphically the second graph is obtained from the first after a
contraction of two leaves.
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Feynman diagrams

Other contractions:

Lorenzo Zambotti February 2016, Potsdam



Computation with ∆̄

Let Ā ⊂ A, we define infinite triangular linear maps

∆̄Fn
e =

∑
A∈Ā(F)

∑
nA,eA

1
eA!

(
n

nA

)
R↑AFnA+πeA

e ⊗R↓AFn−nA
e+eA

A, δ− :
ρ

`1 `3`2

ρA1

`4

`5 `6 `7

ρA2

`8

−→
ρA1

`4

`3

ρA2

`6 `7

⊗
ρ

ρA2
ρA1

`1 `2 `5 `8

A+, δ+ :
ρ

`1 `3`2

`4

`5 `6 `7 `8

−→
ρ

`3

`4

`6 `7

⊗
ρ

`8`5`1 `2
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Renormalisation groups

Recall that

δ+Tn
e =

∑
A∈A+(T)

∑
nA,eA

1
eA!

(
n

nA

)
R↑ATnA+πeA

e ⊗R↓ATn−nA
e+eA

∆ = (id⊗Π+)δ+, ∆+ = (Π+ ⊗Π+)δ+.

Now

δ−Tn
e =

∑
A∈A−(T)

∑
nA,eA

1
eA!

(
n

nA

)
R↑ATnA+πeA

e ⊗R↓ATn−nA
e+eA

∆̂ = (Π− ⊗ id)δ−, ∆− = (Π− ⊗Π−)δ−.
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Renormalisation groups

Positive renormalization:
G := {g ∈ H∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H+},

Γg : H → H, Γgτ := (id⊗ g)∆τ

ΓgΓĝ = Γg′ , Γg′τ := (g⊗ ĝ)∆+τ

Negative renormalization:
R := {` ∈ H∗− : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H−}

M` : H → H, M`τ := (`⊗ id)∆̂τ

M`Mˆ̀ = M`′ , M`′τ := (`⊗ ˆ̀)∆−τ

Note that G and R depend on the equation.
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Nilpotency of Renormalisation groups

Note that
I for all Γ ∈ G and τ ∈ Hα,

Γτ − τ ∈
⊕
β<α

Hβ.

I for all M ∈ R and τ ∈ Hα,

Mτ − τ ∈
⊕
β>α

Hβ.

The last property is the reason why in general ΠM
x 6= ΠxM.
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Hopf algebras

We have presented several algebraic constructions based on
extraction/contraction of labelled forests.

This works well but only up to a certain point. In fact this operation
entails a certain loss of information. There are several possible
definitions of different regularity structures which retain the necessary
information.

Instead of extracting/contracting, we can choose a different operation:
if F is a finite set, then we can consider the set of pairs (B,A) with
A ⊆ B ⊆ F and

∆(B,A) :=
∑

A⊆C⊆B

(C,A)⊗ (B,C).

Then it is easy to see that this operation is co-associative

(∆⊗ id)∆ = (id⊗∆)∆.
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Labelled forests

Now we suppose that F is a forest and A, F̂ are subforests with
F̂ ⊆ A ⊆ F. Then

∆(F, F̂) :=
∑

F̂⊆A⊆F

(A, F̂)⊗ (F,A)

is similar to the operation of extraction/contraction but without loss of
information.

How can we add labels? Recall that
I nodes represent integration variables
I edges represent integration kernels
I node-labels represent powers of the integration variables
I edge-labels represent derivatives of the integration kernels.
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Labelled forests

One possible choice is to work on the space F := {(F, F̂, n, n̂, e)}
where

1. F̂ is a subforest of F

2. n is an Nd-valued function on the node set NF of F

3. n̂ is a Zd-valued function on NF with support in the node set NF̂ of
F̂

4. e is an Nd-valued function on the edge set EF of F with support in
EF \ EF̂.

For ε : EF → Nd we define πε : NF → Nd

πε(x) :=
∑

e=(x,y)∈EF

ε(e).
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Coproduct

∆̄(F, F̂, n, n̂, e)

:=
∑

A∈Ā(F,F̂)

∑
εA,nA

1
εA!

(
n

nA

)
(A, F̂, nA + πεA, n̂, e)⊗

⊗ (F,A, n− nA, n̂ + nA + π(εA − eA
∅), eA + εA) ,

where
I Ā(F, F̂) is a class of subforests of F containing F̂
I for a subforest A of F we denote eA := e�EF\EA

I nA runs over all nA : NF → Nd supported by NA

I εA runs over all εA : EF → Nd supported on the set of edges

∂(F,A) := {(e+, e−) ∈ EF \ EA : e+ ∈ NA} .

Note that ∆̄ is defined by an infinite sum, since εA is unconstrained.
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Coproduct

The construction on couples of forests:

∆̄(F, F̂, n, n̂, e)

:=
∑

A∈Ā(F,F̂)

∑
εA,nA

1
εA!

(
n

nA

)
(A, F̂, nA + πεA, n̂, e)⊗

⊗ (F,A, n− nA, n̂ + nA + π(εA − eA
∅), eA + εA) ,

the construction on forests is

∆̄Fn
e =

∑
A∈Ā(F)

∑
nA,εA

1
εA!

(
n

nA

)
R↑AFnA+πεA

e ⊗R↓AFn−nA
e+εA

(see also the extended structure in Yvain’s second lecture).
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Coassociativity

Under some assumptions on Ā(F, F̂), we have

(∆̄⊗ id)∆̄ = (id⊗ ∆̄)∆̄.

This is in particular true in two special cases:

I A−(F, F̂) := {all forests A : F̂ ⊆ A ⊆ F}
I A+(F, F̂) := {all forests A : F̂ ⊆ A ⊆ F, and for every connected

component T of F, T ∩ A is a tree containing the root of T}.

We call δ− and δ+ the corresponding operators.
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Double coassociativity

There is a way to reformulate the previous construction so that

M(13)(2)(4)
(
δ− ⊗ δ−

)
δ+ = (id⊗ δ+)δ− ,

on F, where we used the notation

M(13)(2)(4)(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 · τ3 ⊗ τ2 ⊗ τ4) .

This allows to define an explicit action of the renormalization group on
the structure group of a regularity structure.

(See [D. Calaque, K. Ebrahimi-Fard and D. Manchon, 2011] for
another appearance of this formula).

The advantage of this construction is its universality. For each equation,
by a projection one finds the correct Hopf algebra/co-module.
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Back to Taylor expansions

In the case of the positive renormalization, Yvain has already
mentioned the following formula:

Πxτ = (Π⊗ fx)∆τ = Π Γfxτ

where fx is suitably defined. Moreover Γxy = Γ−1
fx Γfy .

This formula relates two canonical objects, Π and Πx, via the positive
renormalization.
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Taylor expansions and negative renormalization

Let Tn
e be a labelled tree. We recall that the renormalised Π̂ε is given by

Π̂εTn
e = ΠMεTn

e =

=
∑
A∈A(T)

∑
eA,nA

1
eA!

(
n

nA

)
`ε

(
Π−R↑ATnA+πeA

e

)
ΠR↓ATn−nA

e+eA
.

This is a (random) function on (Rd)NT .

Let us suppose that T contains exactly n subtrees Ti ⊂ T such that
ri := −|(Ti)

0
e | > 0 and that they are pairwise disjoint.

We set for i = 1, . . . , n

Fi(yv, v ∈ NTi) :=
∏

v∈NTi\{ρTi}

(yv)
n(v)

∏
e∈E∂Ti

G(e(e))(ye+ − ye−).
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Taylor expansions and negative renormalization

Now for F : RdN → R, r ∈ R, v ∈ RdN , we define Tr,vK : RdN → R
as

Tr,vF(y) := F(y)−
∑

0≤|j|s<r

(y− v)j

j!
F(j)(v),

namely Tr,vF is the remainder of the Taylor expansion of F of order r
around v. Then we find

Π̂εTn
e (yv, v ∈ NT) =∏

v/∈∪iNTi

(yv)
n(v)

∏
e∈ET\∪iE∂Ti

G(e(e))(ye+ − ye−)

n∏
i=1

Tr′i ,yρTi
Fi(yv, v ∈ NTi)

where for i = 1, . . . , n

Fi(yv, v ∈ NTi) :=
∏

v∈NTi\{ρTi}

(yv)
n(v)

∏
e∈E∂Ti

G(e(e))(ye+ − ye−).
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The BPHZ formula

The previous result is called in QFT the BPHZ renormalization and is
due to Bogoliubov-Parasiuk-Hepp-Zimmermann. (See Ajay Chandra’s
talk tomorrow)

That’s fine for me: the only problem is the P.
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The end

Thanks
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