Renormalisation in regularity structures

Lorenzo Zambotti Univ. Paris 6 (based on work by Martin Hairer and on joint work with Yvain Bruned and M.H.)

February 2016, Potsdam

- Stochastic Partial Differential Equations
- Taylor expansions
- Renormalization groups
- Hopf algebras and co-modules
- Labelled trees and forests
- Feynman diagrams
- ▶ ...

< 回 > < 回 > < 回 >

Notations

For $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ and $k = (k_1, \dots, k_d) \in \mathbb{N}^d$ we write $x^k := \prod_{i=1}^d x_i^{k_i} \in \mathbb{R}.$

 $X = (X_1, \ldots, X_d)$ denotes a variable, and X^k the **abstract monomial**

$$X^k := \prod_{i=1}^d X_i^{k_i}.$$

A **monomial** is a function $\prod_x X^k : \mathbb{R}^d \to \mathbb{R}$

 $\Pi_x X^k(y) := (y - x)^k.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Taylor expansions

The Taylor expansion of the function $y \mapsto y^k$ around the fixed base point *x* is

$$y^{k} = (y - x + x)^{k} = \sum_{i=0}^{k} {\binom{k}{i}} x^{k-i} (y - x)^{i}$$

= $\sum_{i=0}^{k} \frac{(y - x)^{i}}{i!} \left. \frac{\partial^{i} y^{k}}{\partial y^{i}} \right|_{y=x}, \qquad \frac{\partial^{i} y^{k}}{\partial y^{i}} \right|_{y=x} = \frac{k!}{(k-i)!} x^{k-i}.$

Therefore the **abstract Taylor expansion** of $y \mapsto y^k$ around *x* is

$$U(x) := \sum_{i=0}^{k} \binom{k}{i} x^{k-i} X^{i} = (X+x)^{k} \in \mathbb{R}[X].$$

Moreover we recover the function $y \mapsto y^k$

 $y^k = \left[\Pi_x U(x)\right](y).$

ヘロン 人間 とくほ とくほ とう

Change of the base point

If we set, for $x, z \in \mathbb{R}^d$, $\Gamma_{xz} : \mathbb{R}[X] \mapsto \mathbb{R}[X]$

$$\Gamma_{xz}X^k = (X + x - z)^k = \sum_{i=0}^k \binom{k}{i} (x - z)^{k-i}X^i,$$

then it is easy to see that

 $U(x)=\Gamma_{xz}U(z).$

Indeed

$$U(x) = (X + x)^{k} = (X + z + x - z)^{k} = \Gamma_{xz}U(z).$$

日とくほとくほど

The operator

$$\Gamma_{xz}X^k = (X + x - z)^k = \sum_{i=0}^k \binom{k}{i} (x - z)^{k-i}X^i.$$

gives a rule to transform a classical Taylor expansion centered at z of a fixed polynomial into one centered at x.

This definition satisfies the simple properties

 $\Pi_z = \Pi_x \Gamma_{xz}, \qquad \Gamma_{xx} = \mathrm{Id}, \qquad \Gamma_{xy} \Gamma_{yz} = \Gamma_{xz},$

 $\deg(\Gamma_{xz}X^k - X^k) < k \qquad \|\Gamma_{xz}X^k - X^k\|_i \le C\|x - z\|^{k-i}.$

イロン 人間 とくほ とくほ とう

Classical polynomials

Given a global function $y \mapsto y^k$, we can associate to each x its Taylor expansion around x

$$U(x) = (X + x)^k = \Gamma_{x0} X^k = \Gamma_{x0} U(0).$$

By linearity, we obtain that $U \mapsto \mathbb{R}[X]$ is the Taylor expansion of a (classical) polynomial $P(\cdot)$ if and only if

 $U(x) - \Gamma_{xz}U(z) \equiv 0$

and in this case

$$U(z) = \sum_{i=0}^{\deg(P)} \frac{P^{(i)}(z)}{i!} X^{i}.$$

In particular for all x, y, z

$$\Pi_x U(x)(y) \equiv \Pi_z U(z)(y) = P(y).$$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ ...

A function $u : \mathbb{R}^d \to \mathbb{R}$ is said to be of class $C^{k+\beta}$ if it is everywhere *k*-times differentiable with (bounded) derivatives and the *k*-th derivative is β -Hölder continuous.

In fact this is equivalent to requiring that for all x there exists a polynomial $P_x(\cdot)$ of degree k such that

$$|u(y) - P_x(y)| \le C|y - x|^{k+\beta}$$
(1)

and in this case necessarily

$$P_x(y) = \sum_{i=0}^k \frac{u^{(i)}(x)}{i!} (y-x)^i = \prod_x \left[\sum_{i=0}^k \frac{u^{(i)}(x)}{i!} X^i \right] (y).$$

Hölder functions

If we define

$$U(x) = \sum_{i=0}^{k} \frac{u^{(i)}(x)}{i!} X^{i} \in \mathbb{R}[X],$$

then we obtain

$$U(x) - \Gamma_{xz} U(z) = \sum_{i=0}^{k} \frac{X^{i}}{i!} \left(u^{(i)}(x) - \sum_{j=0}^{k-i} \frac{u^{(i+j)}(z)}{j!} (x-z)^{j} \right)$$

and in particular $u \in C^{k+\beta}$ iff for all $i \leq k$

$$||U(x) - \Gamma_{xz} U(z)||_i \le C ||x - z||^{k+\beta-i}.$$

We say that $U \in \mathcal{D}^{\gamma}$ if $U : \mathbb{R}^d \to \mathbb{R}[X]$ takes values in the span of monomials with degree strictly less than γ and for all $i < \gamma$

$$||U(x) - \Gamma_{xz} U(z)||_i \le C ||x - z||^{\gamma - i}.$$

This gives a characterization of Hölder functions u in terms of their Taylor sum U and the operators Γ_{xz} . In general

 $u(x) = \Pi_x U(x)(x), \qquad (reconstruction)$ $u(y) - \Pi_x U(x)(y) \neq 0, \qquad \Pi_x U(x) \neq \Pi_z U(z).$

For instance, if d = 1 then the ODE with α -Hölder coefficient $b : \mathbb{R} \to \mathbb{R}$ $\frac{du}{dx} = b(u(x)), \qquad u(0) = u_0 \in \mathbb{R}$

can be coded by $U \in \mathcal{D}^{1+\alpha}$ where

 $U(x) = u(x) + b(u(x))X, \qquad x \in \mathbb{R}.$

伺 とく ヨ とく ヨ とう

Generalized Taylor expansions

Regularity Structures are a far-reaching generalization of the previous construction.

We want to add **new monomials** representing random distributions and to solve stochastic (partial) differential equations.

Generalized Taylor expansions

Regularity Structures are a far-reaching generalization of the previous construction.

We want to add **new monomials** representing random distributions and to solve stochastic (partial) differential equations.

For instance, let $\xi = \xi(x)$ is a space-time white noise on \mathbb{R}^d , i.e. a centered Gaussian field such that

$$\mathbb{E}(\xi(x)\xi(y)) = \delta(x-y), \qquad x, y \in \mathbb{R}^d.$$

A concrete realisation: for all $\psi \in L^2(\mathbb{R}^{d-1})$ and $t \in \mathbb{R}$

$$\int_{[0,t]\times\mathbb{R}^{d-1}}\psi(x)\,\xi(x)\,\mathrm{d}x:=\sum_k B_k(t)\,\langle e_k,\psi\rangle,$$

where $(B_k)_k$ is an IID sequence of Brownian motions and $(e_k)_k$ is a complete orthonormal system in $L^2(\mathbb{R}^{d-1})$.

Let $v : \mathbb{R}^d \to \mathbb{R}$ solve the heat equation with external forcing

$$\partial_t v = \Delta v + \xi, \qquad x \in \mathbb{R}^d,$$

where

$$\partial_t = \partial_{x_1}, \qquad \Delta := \sum_{i=2}^d \partial_{x_i}^2.$$

The properties of this "process" depend heavily on the dimension, since

$$\operatorname{Var}(v(x)) = \int_0^t \frac{C_d}{s^{\frac{d-1}{2}}} ds \begin{cases} < +\infty, \quad d=2\\ = +\infty, \quad d \ge 3 \end{cases}$$

so that for $d \ge 3$ the solution is a random distribution.

イロト イヨト イヨト イヨト

Singular stochastic PDEs

If $\nabla = (\partial_{x_i}, i = 2, ..., d)$ then for a class of equations $\partial_t u = \Delta u + F(u, \nabla u, \xi), \qquad x \in \mathbb{R} \times \mathbb{R}^{d-1}$

Lorenzo Zambotti February 2016, Potsdam

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Singular stochastic PDEs

If $\nabla = (\partial_{x_i}, i = 2, ..., d)$ then for a class of equations $\partial_t u = \Delta u + F(u, \nabla u, \xi), \qquad x \in \mathbb{R} \times \mathbb{R}^{d-1}$ (KPZ) $\partial_t u = \Delta u + (\nabla u)^2 + \xi, \quad x \in \mathbb{R} \times \mathbb{R},$ (gKPZ) $\partial_t u = \Delta u + f(u) (\nabla u)^2 + g(u) \xi, \quad x \in \mathbb{R} \times \mathbb{R},$ (PAM) $\partial_t u = \Delta u + u \xi, \quad x \in \mathbb{R} \times \mathbb{R}^2,$

 $(\Phi_3^4) \qquad \partial_t u = \Delta u - u^3 + \xi, \quad x \in \mathbb{R} \times \mathbb{R}^3.$

Singular stochastic PDEs

If $\nabla = (\partial_{x_i}, i = 2, \dots, d)$ then for a class of equations $\partial_t u = \Delta u + F(u, \nabla u, \xi), \qquad x \in \mathbb{R} \times \mathbb{R}^{d-1}$ (KPZ) $\partial_t u = \Delta u + (\nabla u)^2 + \xi, \quad x \in \mathbb{R} \times \mathbb{R},$ (gKPZ) $\partial_t u = \Delta u + f(u) (\nabla u)^2 + g(u) \xi, \quad x \in \mathbb{R} \times \mathbb{R},$ (PAM) $\partial_t u = \Delta u + u \xi, \quad x \in \mathbb{R} \times \mathbb{R}^2,$

 $(\Phi_3^4) \qquad \partial_t u = \Delta u - u^3 + \xi, \quad x \in \mathbb{R} \times \mathbb{R}^3.$

Even for polynomial non-linearities, we do not know how to properly define products of (random) distributions.

This is where infinities arise (see below).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $d \geq 2$.

For $x = (x_1, \dots, x_d) \in \mathbb{R}^d$ we define the heat kernel $G : \mathbb{R}^d \mapsto \mathbb{R}$

$$G(x) = \mathbb{1}_{(x_1 > 0)} \frac{1}{\sqrt{2\pi x_1}} \exp\left(-\frac{x_2^2 + \dots + x_d^2}{2x_1}\right).$$

Given $k = (k_1, \ldots, k_d) \in \mathbb{N}^d$ we define

$$G^{(k)}(x) = rac{\partial^{k_1}}{\partial x_1^{k_1}} \cdots rac{\partial^{k_d}}{\partial x_d^{k_d}} G(x).$$

「日本・日本・日本・

The heat kernel has a very important scaling property:

$$G(\delta^2 x_1, \delta x_2, \dots, \delta x_d) = \frac{1}{\delta} G(x), \qquad \delta > 0.$$

This motivates the following definitions:

$$||x - y||_{\mathfrak{s}} := |x_1 - y_1|^{1/2} + |x_2 - y_2| + \dots + |x_d - y_d|, \qquad x \in \mathbb{R}^d,$$

$$|k|_{\mathfrak{s}} := 2k_1 + k_2 + \dots + k_d, \qquad k \in \mathbb{N}^2.$$

< E

We want to introduce new monomials which allow to approximate *u* locally.

We need a monomial for the noise : we introduce

 $\Xi, \qquad \Pi_x \Xi(y) := \xi(y).$

Remember that $\prod_{x} X^{k}(y) = (y - x)^{k}$ and

 $|\Pi_x X^k(y)| \le ||x-y||_{\mathfrak{s}}^{|k|_{\mathfrak{s}}}.$

Then we see that the scaled degree $|k|_{\mathfrak{s}}$ of X^k has both an algebraic and an analytic interpretation.

We need a similar concept for all (abstract) monomials.

イロン 不良 とくほどう

Abstract Monomials

We define the following family \mathcal{T} of symbols (trees):

- ▶ $1, X \in \{X_1, \ldots, X_d\}, \Xi \in \mathcal{T}$
- if $\tau_1, \ldots, \tau_n \in \mathcal{T}$ then $\tau_1 \cdots \tau_n \in \mathcal{T}$ (commutative and associative product)
- ▶ if $\tau \in \mathcal{T}$ then $\mathcal{I}(\tau) \in \mathcal{T}$ and $\mathcal{I}_k(\tau) \in \mathcal{T}$ (formal convolution with the heat kernel differentiated *k* times)

Examples: $\mathcal{I}(\Xi), X^n \Xi \mathcal{I}_k(\Xi), \mathcal{I}((\mathcal{I}_1(\Xi))^2)$

To a symbol τ we associate a real number $|\tau|$ called its homogeneity: $|\Xi| = \alpha < -(d+1)/2, |X_1| = 2, |X_2| = 1, |1| = 0$

 $|\tau_1 \cdots \tau_n| = |\tau_1| + \cdots + |\tau_n|, \quad |\mathcal{I}_k(\tau)| = |\tau| + 2 - |k|_{\mathfrak{s}}.$

Let \mathcal{H} be the space of linear combinations of elements in \mathcal{T} .

 $\alpha < 0$ is chosen so that ξ is a.s. a distribution of order at least α .

A B K A B K

We fix a bounded smooth function ξ and define recursively functions of $y \in \mathbb{R}^d$

$$\Pi 1(y) = 1, \qquad \Pi X(y) = y, \qquad \Pi \Xi(y) = \xi(y),$$
$$\Pi(\tau_1 \cdots \tau_n)(y) = \prod_{i=1}^n \Pi \tau_i(y),$$
$$\Pi \mathcal{I}_k(\tau)(y) = (G^{(k)} * \Pi \tau)(y).$$

These are global functions which include $y \mapsto y^k$.

イロト イヨト イヨト イヨト

The Π_x operators

Т

We define recursively for $\tau \in \mathcal{T}$ continuous generalized monomials $\prod_x \tau$ around the base point *x*

$$\Pi_{x} 1(y) = 1, \qquad \Pi_{x} X(y) = (y - x), \qquad \Pi_{x} \Xi(y) = \xi(y),$$
$$\Pi_{x} (\tau_{1} \cdots \tau_{n})(y) = \prod_{i=1}^{n} \Pi_{x} \tau_{i}(y),$$
$$\Pi_{x} \mathcal{I}_{k}(\tau)(y) = (G^{(k)} * \Pi_{x} \tau)(y) - \sum_{i=0}^{|\mathcal{I}_{k}(\tau)|} \frac{(y - x)^{i}}{i!} (G^{(i+k)} * \Pi_{x} \tau)(x).$$

Then $|\tau|$ is the analytical homogeneity of the monomial $\prod_x \tau$:

 $|\Pi_x \tau(y)| \le C ||y-x||_{\mathfrak{s}}^{|\tau|}.$

Beware: if ξ is white noise then products are (very) problematic and will have to be renormalized.

Let us give an (almost) complete definition of a regularity structure \mathcal{T} [Hairer '14]: this is a triplet (A, \mathcal{H} , G) where

- A ⊂ ℝ is an index set which contains 0 and which is locally finite and bounded below (the set of possible homogeneities)
- $\mathcal{H} = \bigoplus_{\alpha \in A} \mathcal{H}_{\alpha}$ is a graded vector space
- *G*, the Structure group, acts on \mathcal{H} in such a way that for all $\Gamma \in G$, $\alpha \in A$ and $a \in \mathcal{H}_{\alpha}$

$$\Gamma a - a \in \bigoplus_{eta < lpha} \mathcal{H}_{eta}.$$

G is one of the two main groups in the theory; its algebraic structure will be discussed in detail by Yvain.

イロト イヨト イヨト イヨト

A model of \mathcal{T} is given by a couple (Π_x, Γ_{xz}) such that

1. for all x, $\Pi_x : \mathcal{T} \mapsto \mathcal{S}'(\mathbb{R}^d)$ and for all $\varphi \in C_c^{\infty}(\mathbb{R}^d)$

 $|\Pi_x \tau(\varphi_{x,\delta})| \leq C \delta^{|\tau|},$

where $\varphi_{x,\delta}(z) := \frac{1}{\delta^{d+1}} \varphi \left(\delta^{-2}(z_1 - x_1), \delta^{-1}(z_i - x_i), i \ge 2 \right).$ 2. $\Gamma : \mathbb{R}^d \times \mathbb{R}^d \to G$ is such that for all x, y, z $\Gamma_{xx} = \operatorname{Id}, \qquad \Gamma_{xy}\Gamma_{yz} = \Gamma_{xz}, \qquad |\Gamma_{xz}\tau - \tau| < |\tau|$ $\|\Gamma_{xz}\tau - \tau\|_{\ell} \le C \|z - x\|^{|\tau| - \ell}, \ \ell < |\tau|.$ 3. for all x, z: $\Pi_z = \Pi_x \Gamma_{xz}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Functional norm

In the general case, for $\gamma > 0$ we say that $U \in \mathcal{D}^{\gamma}$ if U takes values in the linear span of the symbols with homogeneity $< \gamma$ and for all $\beta < \gamma$

 $\|U(x) - \Gamma_{xy}U(y)\|_{\beta} \le C_U \|x - y\|_{\mathfrak{s}}^{\gamma - \beta}$

This is a notion of Hölder regularity with respect to generalized monomials.

If *U* takes values in sums of X^k , then the definition is equivalent to the classical C^{γ} -regularity (for $\gamma \notin \mathbb{N}$).

This definition is inspired by Massimiliano Gubinelli's theory of controlled rough paths.

We want to solve our SPDEs with some abstract fixed point in one of these Banach spaces.

▲帰▶ ★ 国▶ ★ 国▶

Our starting problem was to associate to a function u a Taylor expansion U(x) around each point x.

What about the inverse problem? Given such $x \mapsto U(x) \in \mathcal{H}$, can we find a function *u* with this expansion up to a remainder?

Our starting problem was to associate to a function u a Taylor expansion U(x) around each point x.

What about the inverse problem? Given such $x \mapsto U(x) \in \mathcal{H}$, can we find a function *u* with this expansion up to a remainder?

This is the content of the Reconstruction Theorem:

For all $\gamma > 0$ there exists a unique operator $\mathcal{R} : \mathcal{D}^{\gamma} \mapsto \mathcal{S}'(\mathbb{R}^d)$ s.t.

$$|\mathcal{R}U(y) - \prod_{x} U(x)(y)| \le C_U ||x - y||_{\mathfrak{s}}^{\gamma}$$
(2)

A (2) > A (2) > A (2) >

for all *x*, *y*, or, more precisely, such that for $\delta > 0$

 $|\mathcal{R}U(\varphi_{x,\delta}) - \prod_{x} U(x)(\varphi_{x,\delta})| \le C_U \delta^{\gamma}.$

Note that (2) is the exact analog of (1): a Taylor expansion of $u := \mathcal{R}U$.

Regularisation of SPDEs

Let $\xi_{\varepsilon} = \rho_{\varepsilon} * \xi$ a regularisation of ξ and let u_{ε} solve

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + F(u_{\varepsilon}, \nabla u_{\varepsilon}, \xi_{\varepsilon}), \qquad x \in \mathbb{R}^d.$$

What happens as $\varepsilon \to 0$?

If we fix a Banach space of generalised functions $\mathcal{H}^{-\alpha}$ on \mathbb{R}^d such that $\xi \in \mathcal{H}^{-\alpha}$ a.s. for some fixed $\alpha > 0$, then the map $\xi_{\varepsilon} \mapsto u_{\varepsilon}$ is not continuous.

We need a topology such that

- the map $\xi_{\varepsilon} \mapsto u_{\varepsilon}$ is continuous
- $\xi_{\varepsilon} \to \xi$ as $\varepsilon \to 0$.

通 ト イ ヨ ト イ ヨ ト

Regularisation of SPDEs

Let $\xi_{\varepsilon} = \rho_{\varepsilon} * \xi$ a regularisation of ξ and let u_{ε} solve

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + F(u_{\varepsilon}, \nabla u_{\varepsilon}, \xi_{\varepsilon}), \qquad x \in \mathbb{R}^d.$$

What happens as $\varepsilon \to 0$?

If we fix a Banach space of generalised functions $\mathcal{H}^{-\alpha}$ on \mathbb{R}^d such that $\xi \in \mathcal{H}^{-\alpha}$ a.s. for some fixed $\alpha > 0$, then the map $\xi_{\varepsilon} \mapsto u_{\varepsilon}$ is not continuous.

We need a topology such that

- the map $\xi_{\varepsilon} \mapsto u_{\varepsilon}$ is continuous
- $\xi_{\varepsilon} \to \xi$ as $\varepsilon \to 0$.

It turns out that the correct topology is, roughly speaking, the convergence of $(\prod_{x}^{\varepsilon}, \Gamma_{xz}^{\varepsilon})$: this is a purely analytic statement.

The probabilistic statement is: "this works for ξ the white noise".

Convergence

Let us try the monomial $\Xi \mathcal{I}(\Xi)$. Then (for simplicity: Π instead of Π_x)

$$T_{\varepsilon} := \Pi^{\varepsilon} \Xi \mathcal{I}(\Xi)(\varphi) = \int \varphi(y) \, \xi_{\varepsilon}(y) \, (G * \xi_{\varepsilon})(y) \, \mathrm{d}y$$

with $\varphi \in C_c^{\infty}(\mathbb{R}^d)$. Now

$$\mathbb{E}[T_{\varepsilon}] = \int \varphi(y) \,\mathbb{E}[\xi_{\varepsilon}(G * \xi_{\varepsilon})](y) \,\mathrm{d}y = \int \varphi(y) \,\rho_{\varepsilon} * G * \rho_{\varepsilon}(0) \,\mathrm{d}y$$

and

$$\lim_{\varepsilon \to 0} \operatorname{Var}[T_{\varepsilon}] = \int \varphi^2(y) \, G^2(y-x) \, \mathrm{d}y \, \mathrm{d}x < +\infty.$$

However $\rho_{\varepsilon} * G * \rho_{\varepsilon}(0) \to +\infty$ as $\varepsilon \to 0$: a first example of the famous infinities which need renormalization. In this case

$$\xi_{\varepsilon} G * \xi_{\varepsilon} - \mathbb{E}[\xi_{\varepsilon} G * \xi_{\varepsilon}] = \xi_{\varepsilon} G * \xi_{\varepsilon} - \rho_{\varepsilon} * G * \rho_{\varepsilon}(0).$$

(1日) (1日) (日) (日)

Products of (random) distributions

Diverging terms include

 $\xi_{\varepsilon}(G * \xi_{\varepsilon}), \quad (\partial_x G * \xi_{\varepsilon})^2, \quad \xi_{\varepsilon} G * (\xi_{\varepsilon} G * \xi_{\varepsilon}), \quad \dots$

They all tend to products of (random) distributions.

Indeed, the problems come from the (canonical) choice of imposing multiplicativity of the \prod_{x}^{ε} operator in (19):

$$\Pi_x^{\varepsilon}(\tau_1\cdots\tau_n)(y)=\prod_{i=1}^n\Pi_x^{\varepsilon}\tau_i(y)$$

This formula needs to be modified:

$$\hat{\Pi}_x^{\varepsilon}(\tau_1\cdots\tau_n)(y) = \prod_{i=1}^n \hat{\Pi}_x^{\varepsilon}\tau_i(y) + ?$$

(we'll discuss later more precisely the ?).

・ロト ・ 四ト ・ ヨト ・ ヨト

Renormalization of the model

It is necessary to modify $(\prod_{x}^{\varepsilon}, \Gamma_{xz}^{\varepsilon})$. But how?

A simple Ansatz is to consider suitable linear operators $M_{\varepsilon} : \mathcal{H} \to \mathcal{H}$ and to look for $(\prod_{x}^{M_{\varepsilon}}, \Gamma_{xz}^{M_{\varepsilon}})$ such that

 $\Pi^{M_{\varepsilon}}\tau = \Pi^{\varepsilon}M_{\varepsilon}\tau$

(note: Π not Π_x) in such a way that $(\Pi_x^{M_{\varepsilon}}, \Gamma_{xz}^{M_{\varepsilon}})$ converges as $\varepsilon \to 0$.

Remember: must satisfy $\Pi_z = \Pi_x \Gamma_{xz}$.

▲撮 ▶ ▲ 置 ▶ ▲ 置 ▶ ...

Renormalization of the model

It is necessary to modify $(\prod_{x}^{\varepsilon}, \Gamma_{xz}^{\varepsilon})$. But how?

A simple Ansatz is to consider suitable linear operators $M_{\varepsilon} : \mathcal{H} \to \mathcal{H}$ and to look for $(\prod_{x}^{M_{\varepsilon}}, \Gamma_{xz}^{M_{\varepsilon}})$ such that

 $\Pi^{M_{\varepsilon}}\tau = \Pi^{\varepsilon}M_{\varepsilon}\tau$

(note: Π not Π_x) in such a way that $(\Pi_x^{M_{\varepsilon}}, \Gamma_{xz}^{M_{\varepsilon}})$ converges as $\varepsilon \to 0$.

Remember: must satisfy $\Pi_z = \Pi_x \Gamma_{xz}$.

Theorem

There exists a finite-dimensional Lie group \mathfrak{R} acting on \mathcal{H} and deterministic $M_{\varepsilon} \in \mathfrak{R}$ such that the only model $(\prod_{x}^{M_{\varepsilon}}, \prod_{xz}^{M_{\varepsilon}})$ satisfying

 $\Pi^{M_{\varepsilon}}\tau = \Pi^{\varepsilon}M_{\varepsilon}\tau$

converges as $\varepsilon \to 0$.

イロト イヨト イヨト イヨト

Regularisation

Let $\xi_{\varepsilon} = \rho_{\varepsilon} * \xi$ a regularisation of the white noise ξ and let u_{ε} solve

 $\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + F(u_{\varepsilon}, \nabla u_{\varepsilon}, \xi_{\varepsilon}), \qquad x \in \mathbb{R} \times \mathbb{R}^{d-1}.$

What happens as $\varepsilon \to 0$?

- We introduce a model $(\prod_{x}^{\varepsilon}, \Gamma_{xz}^{\varepsilon})$ as in (19)
- we associate to u_{ε} a Taylor expansion U_{ε}
- we show that U_{ε} solves a fixed point problem in some $\mathcal{D}^{\gamma}(\varepsilon)$
- we hope that everything converges as $\varepsilon \to 0$.

Technical remark: we can restrict all models to $\bigoplus_{\beta < \gamma} \mathcal{H}_{\beta}$, thus to a finite number of generalized monomials.

One of the main results of the Regularity Structures theory is that

• *u* is a continuous functional of (\prod_x, Γ_{xz}) (see below).

However, does $(\prod_{x}^{\varepsilon}, \Gamma_{xz}^{\varepsilon})$ converge as $\varepsilon \to 0$?

・ロト ・ 四ト ・ ヨト ・ ヨト

The analytic part of the theory constructs a solution map

 $\Phi: \mathcal{M} \to \mathcal{S}'(\mathbb{R}^d)$

where \mathcal{M} is the space of possible (Π_x, Γ_{xz}) 's of \mathcal{T} , such that

- Φ is continuous
- if $\xi \in C^{\infty}(\mathbb{R}^d)$ and $u = \Phi(\Pi_x, \Gamma_{xz})$, see (19), then

 $\partial_t u = \Delta u + F(u, \nabla u, \xi).$

• in particular if $u_{\varepsilon} = \Phi(\prod_{x}^{\varepsilon}, \Gamma_{xz}^{\varepsilon})$ with $\xi_{\varepsilon} := \rho_{\varepsilon} * \xi$ then

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + F(u_{\varepsilon}, \nabla u_{\varepsilon}, \xi_{\varepsilon}).$$

Now, if $\hat{u}_{\varepsilon} := \Phi(\prod_{x}^{M_{\varepsilon}}, \Gamma_{xz}^{M_{\varepsilon}})$, does \hat{u}_{ε} satisfy an equation?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

The renormalized equation

Amazingly, \hat{u}_{ε} satisfies

$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + F_{\varepsilon}(\hat{u}_{\varepsilon}, \nabla \hat{u}_{\varepsilon}, \xi_{\varepsilon})$$

where F_{ε} is an explicit, deterministic modification of F.

同ト・モト・モー

The renormalized equation

Amazingly, \hat{u}_{ε} satisfies

$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + F_{\varepsilon}(\hat{u}_{\varepsilon}, \nabla \hat{u}_{\varepsilon}, \xi_{\varepsilon})$$

where F_{ε} is an explicit, deterministic modification of *F*. Examples:

(KPZ)
$$\partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + (\nabla \hat{u}_{\varepsilon})^2 - C_{\varepsilon} + \xi_{\varepsilon}, \quad x \in \mathbb{R} \times \mathbb{R},$$

$$(\mathsf{g}\mathsf{K}\mathsf{P}\mathsf{Z}) \qquad \partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + f(\hat{u}_{\varepsilon}) \left((\nabla \hat{u}_{\varepsilon})^2 - C_{\varepsilon} \right) \\ + h_{\varepsilon}(\hat{u}_{\varepsilon}) + g(\hat{u}_{\varepsilon}) \left(\xi_{\varepsilon} - C_{\varepsilon} g'(\hat{u}_{\varepsilon}) \right), \quad x \in \mathbb{R} \times \mathbb{R},$$

$$(\text{PAM}) \qquad \partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} + \hat{u}_{\varepsilon} \xi_{\varepsilon} - C_{\varepsilon}, \quad x \in \mathbb{R} \times \mathbb{R}^2,$$

$$(\Phi_3^4) \qquad \partial_t \hat{u}_{\varepsilon} = \Delta \hat{u}_{\varepsilon} - \hat{u}_{\varepsilon}^3 + (C_{\varepsilon}^1 + C_{\varepsilon}^2) \, \hat{u}_{\varepsilon} + \xi_{\varepsilon}, \quad x \in \mathbb{R} \times \mathbb{R}^3.$$

|□ ▶ ▲ □ ▶ ▲ □ ▶

The renormalized solution

The renormalization group \Re acts on the possible limits $(\hat{\Pi}_x, \hat{\Gamma}_{xz})$ and therefore on the possible renormalized solutions $\hat{u} := \Phi(\hat{\Pi}_x, \hat{\Gamma}_{xz})$.

Therefore the renormalized solution is neither unique nor canonical. One can define for instance

 $\xi_{\varepsilon}(G \ast \xi_{\varepsilon}) \, \mapsto \, \xi_{\varepsilon}(G \ast \xi_{\varepsilon}) - \mathbb{E}[\xi_{\varepsilon}(G \ast \xi_{\varepsilon})] + c$

for any constant $c \in \mathbb{R}$ and this still defines a good limit.

Questions:

• does \hat{u} satisfy an equation ?

同 🖌 🖉 🕨 🖌 🖻 🕨

The renormalized solution

The renormalization group \Re acts on the possible limits $(\hat{\Pi}_x, \hat{\Gamma}_{xz})$ and therefore on the possible renormalized solutions $\hat{u} := \Phi(\hat{\Pi}_x, \hat{\Gamma}_{xz})$.

Therefore the renormalized solution is neither unique nor canonical. One can define for instance

 $\xi_{\varepsilon}(G \ast \xi_{\varepsilon}) \, \mapsto \, \xi_{\varepsilon}(G \ast \xi_{\varepsilon}) - \mathbb{E}[\xi_{\varepsilon}(G \ast \xi_{\varepsilon})] + c$

for any constant $c \in \mathbb{R}$ and this still defines a good limit.

Questions:

• does \hat{u} satisfy an equation ?

Answer:

▶ yes and no...

 \hat{U} satisfy an equation in \mathcal{D}^{γ} , \hat{u} satisfies an equation with renormalized products.

The study of our singular SPDE

 $\partial_t u = \Delta u + F(u, \nabla u, \xi)$

factorises into three different problems:

- (Analytic step) Construction and continuity of the solution map $\Phi: \mathcal{M} \to \mathcal{S}'(\mathbb{R}^d)$, where \mathcal{M} is the space of models.
- ► (Algebraic step) Construction of the renormalization group ℜ.
- (Probabilistic step) Convergence of the modified model $(\Pi_x^{M_{\varepsilon}}, \Gamma_{xz}^{M_{\varepsilon}})$ as $\varepsilon \to 0$ to an \mathcal{M} -valued random variable $(\hat{\Pi}_x, \hat{\Gamma}_{xz})$ that we call the renormalized model.

同ト・モト・モ

Recall that, by the definition (18), the Π^{ε} 's are polynomial functions of ξ_{ε} .

We have now *N* random variables $P_1(\xi_{\varepsilon}), \ldots, P_N(\xi_{\varepsilon})$, polynomial functions of ξ_{ε} .

More precisely, for a fixed $\varphi \in C_c^{\infty}$ we consider the random variables

$$Z_i := \int_{\mathbb{R}^d} \varphi(z) P_i(\xi_{\varepsilon}(z)) \, dz, \qquad i = 1, \dots, N.$$

To each such random variable we associate a rooted tree T_i . Every integration variable in Z_i is a vertex in T_i . Every integral kernel in Z_i is an edge in T_i .

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

$$\mathcal{I}(\Xi) \longrightarrow \int \varphi(z) \, G * \xi_{\varepsilon}(z) \, dz \quad \longrightarrow \quad \begin{array}{c} x \quad \stackrel{\bullet}{\underset{z \quad \bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset{\bullet}}{\overset$$

$$\Xi \mathcal{I}(\Xi) \longrightarrow \int \varphi(z) \, \xi_{\varepsilon}(z) \, G * \xi_{\varepsilon}(z) \, dz \quad \longrightarrow \quad \begin{array}{c} x \stackrel{\bullet}{\underset{z \stackrel{\bullet}{\longrightarrow}}{\longrightarrow}} & y_2 \\ \downarrow \\ z \stackrel{\bullet}{\underset{\bullet}{\longrightarrow}} & y_1 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), <

æ

Do you remember? We noticed that $\xi_{\varepsilon} G * \xi_{\varepsilon}$ can be renormalised by subtracting its expectation:

$$\xi_{\varepsilon} G * \xi_{\varepsilon} - \mathbb{E}[\xi_{\varepsilon} G * \xi_{\varepsilon}] = \xi_{\varepsilon} G * \xi_{\varepsilon} - \rho_{\varepsilon} * G * \rho_{\varepsilon}(0).$$

In terms of graphs (Feynman diagrams), this can be written as

Note that graphically the second graph is obtained from the first after a contraction of two leaves.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Other contractions:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Computation with $\bar{\Delta}$

Let $\bar{\mathfrak{A}} \subset \mathfrak{A}$, we define infinite triangular linear maps

$$\bar{\Delta}F^{\mathfrak{n}}_{\mathfrak{e}} = \sum_{\mathcal{A}\in\bar{\mathfrak{A}}(F)}\sum_{\mathfrak{n}_{\mathcal{A}},\mathfrak{e}_{\mathcal{A}}}\frac{1}{\mathfrak{e}_{\mathcal{A}}!}\binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}}\mathcal{R}^{\uparrow}_{\mathcal{A}}F^{\mathfrak{n}_{\mathcal{A}}+\mathfrak{n}_{\mathcal{E}_{\mathcal{A}}}}_{\mathfrak{e}}\otimes\mathcal{R}^{\downarrow}_{\mathcal{A}}F^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}}}_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}$$

Renormalisation groups

Recall that

$$\delta^{+}T^{\mathfrak{n}}_{\mathfrak{e}} = \sum_{\mathcal{A}\in\mathfrak{A}^{+}(T)}\sum_{\mathfrak{n}_{\mathcal{A}},\mathfrak{e}_{\mathcal{A}}}\frac{1}{\mathfrak{e}_{\mathcal{A}}!}\binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}}\mathcal{R}^{\uparrow}_{\mathcal{A}}T^{\mathfrak{n}_{\mathcal{A}}+\mathfrak{n}_{\mathfrak{e}_{\mathcal{A}}}} \otimes \mathcal{R}^{\downarrow}_{\mathcal{A}}T^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}}}_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}$$

 $\Delta = (\mathrm{id}\otimes \Pi_+)\delta^+, \qquad \Delta^+ = (\Pi_+\otimes \Pi_+)\delta^+.$

Now

$$\delta^{-}T^{\mathfrak{n}}_{\mathfrak{e}} = \sum_{\mathcal{A}\in\mathfrak{A}^{-}(T)} \sum_{\mathfrak{n}_{\mathcal{A}},\mathfrak{e}_{\mathcal{A}}} \frac{1}{\mathfrak{e}_{\mathcal{A}}!} \binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}} \mathcal{R}^{\uparrow}_{\mathcal{A}} T^{\mathfrak{n}_{\mathcal{A}}+\pi\mathfrak{e}_{\mathcal{A}}}_{\mathfrak{e}} \otimes \mathcal{R}^{\downarrow}_{\mathcal{A}} T^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}}}_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}$$
$$\hat{\Delta} = (\Pi_{-} \otimes \mathrm{id})\delta^{-}, \qquad \Delta^{-} = (\Pi_{-} \otimes \Pi_{-})\delta^{-}.$$

ヘロ・スピ・スティー

크

Positive renormalization:

 $G:=\{g\in\mathcal{H}_+^*:g(\tau_1\tau_2)=g(\tau_1)g(\tau_2),\quad\forall\ \tau_1,\tau_2\in\mathcal{H}_+\},$

$\Gamma_g: \mathcal{H} \to \mathcal{H},$	$\Gamma_g au := (\mathrm{id} \otimes g) \Delta au$
$\Gamma_g \Gamma_{\hat{g}} = \Gamma_{g'},$	$\Gamma_{g'} au:=(g\otimes \hat{g})\Delta^+ au$

Negative renormalization: $\mathfrak{R} := \{ \ell \in \mathcal{H}_{-}^{*} : g(\tau_{1}\tau_{2}) = g(\tau_{1})g(\tau_{2}), \quad \forall \tau_{1}, \tau_{2} \in \mathcal{H}_{-} \}$ $M_{\ell} : \mathcal{H} \to \mathcal{H}, \qquad M_{\ell}\tau := (\ell \otimes \mathrm{id})\hat{\Delta}\tau$ $M_{\ell}M_{\hat{\ell}} = M_{\ell'}, \qquad M_{\ell'}\tau := (\ell \otimes \hat{\ell})\Delta^{-}\tau$

Note that G and \mathfrak{R} depend on the equation.

Nilpotency of Renormalisation groups

Note that

• for all $\Gamma \in G$ and $\tau \in \mathcal{H}_{\alpha}$,

$$\Gamma \tau - \tau \in \bigoplus_{\beta < \alpha} \mathcal{H}_{\beta}.$$

• for all $M \in \mathfrak{R}$ and $\tau \in \mathcal{H}_{\alpha}$,

$$M\tau - \tau \in \bigoplus_{\beta > \alpha} \mathcal{H}_{\beta}.$$

The last property is the reason why in general $\Pi_x^M \neq \Pi_x M$.

⋳ ▶ ∢ ⋸ ▶

Hopf algebras

We have presented several algebraic constructions based on extraction/contraction of labelled forests.

This works well but only up to a certain point. In fact this operation entails a certain loss of information. There are several possible definitions of different regularity structures which retain the necessary information.

Instead of extracting/contracting, we can choose a different operation: if *F* is a finite set, then we can consider the set of pairs (B, A) with $A \subseteq B \subseteq F$ and

$$\Delta(B,A) := \sum_{A \subseteq C \subseteq B} (C,A) \otimes (B,C).$$

Then it is easy to see that this operation is co-associative

$$(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta.$$

▲掃♪ ▲ 注♪ ▲ 注♪

Now we suppose that *F* is a forest and *A*, \hat{F} are subforests with $\hat{F} \subseteq A \subseteq F$. Then

$$\Delta(F,\hat{F}) := \sum_{\hat{F} \subseteq A \subseteq F} (A,\hat{F}) \otimes (F,A)$$

is similar to the operation of extraction/contraction but without loss of information.

How can we add labels? Recall that

- nodes represent integration variables
- edges represent integration kernels
- node-labels represent powers of the integration variables
- edge-labels represent derivatives of the integration kernels.

One possible choice is to work on the space $\mathfrak{F} := \{(F, \hat{F}, \mathfrak{n}, \hat{\mathfrak{n}}, \mathfrak{e})\}$ where

- 1. \hat{F} is a subforest of F
- 2. **n** is an \mathbb{N}^d -valued function on the node set N_F of F
- 3. $\hat{\mathbf{n}}$ is a \mathbb{Z}^d -valued function on N_F with support in the node set $N_{\hat{F}}$ of \hat{F}
- 4. \mathfrak{e} is an \mathbb{N}^d -valued function on the edge set E_F of F with support in $E_F \setminus E_{\hat{F}}$.

For $\varepsilon: E_F \to \mathbb{N}^d$ we define $\pi \varepsilon: N_F \to \mathbb{N}^d$

$$\pi \varepsilon(x) := \sum_{e=(x,y)\in E_F} \varepsilon(e).$$

Coproduct

$$\begin{split} \bar{\Delta}(F,\hat{F},\mathfrak{n},\hat{\mathfrak{n}},\mathfrak{e}) \\ &:= \sum_{A \in \bar{\mathfrak{A}}(F,\hat{F})} \sum_{\varepsilon_{A},\mathfrak{n}_{A}} \frac{1}{\varepsilon_{A}!} \binom{\mathfrak{n}}{\mathfrak{n}_{A}} (A,\hat{F},\mathfrak{n}_{A} + \pi\varepsilon_{A},\hat{\mathfrak{n}},\mathfrak{e}) \otimes \\ & \otimes (F,A,\mathfrak{n} - \mathfrak{n}_{A}, \ \hat{\mathfrak{n}} + \mathfrak{n}_{A} + \pi(\varepsilon_{A} - \mathfrak{e}_{\emptyset}^{A}), \mathfrak{e}_{A} + \varepsilon_{A}) \;, \end{split}$$

where

- $\bar{\mathfrak{A}}(F, \hat{F})$ is a class of subforests of *F* containing \hat{F}
- for a subforest *A* of *F* we denote $\mathfrak{e}_A := \mathfrak{e}_{E_F \setminus E_A}$
- \mathfrak{n}_A runs over all $\mathfrak{n}_A : N_F \to \mathbb{N}^d$ supported by N_A
- ▶ ε_A runs over all $\varepsilon_A : E_F \to \mathbb{N}^d$ supported on the set of edges

 $\partial(F,A):=\left\{(e_+,e_-)\in E_F\setminus E_A\ :\ e_+\in N_A\right\}.$

Note that $\overline{\Delta}$ is defined by an infinite sum, since ε_A is unconstrained.

同 と く ヨ と く ヨ と

The construction on couples of forests:

$$\begin{split} \bar{\Delta}(F,\hat{F},\mathfrak{n},\hat{\mathfrak{n}},\mathfrak{e}) \\ &:= \sum_{A \in \bar{\mathfrak{A}}(F,\hat{F})} \sum_{\varepsilon_A,\mathfrak{n}_A} \frac{1}{\varepsilon_A!} \binom{\mathfrak{n}}{\mathfrak{n}_A} (A,\hat{F},\mathfrak{n}_A + \pi\varepsilon_A,\hat{\mathfrak{n}},\mathfrak{e}) \otimes \\ & \otimes (F,A,\mathfrak{n} - \mathfrak{n}_A, \ \hat{\mathfrak{n}} + \mathfrak{n}_A + \pi(\varepsilon_A - \mathfrak{e}^A_\emptyset), \mathfrak{e}_A + \varepsilon_A) \;, \end{split}$$

the construction on forests is

$$\bar{\Delta}F^{\mathfrak{n}}_{\mathfrak{e}} = \sum_{A \in \bar{\mathfrak{A}}(F)} \sum_{\mathfrak{n}_{A}, \varepsilon_{A}} \frac{1}{\varepsilon_{A}!} \binom{\mathfrak{n}}{\mathfrak{n}_{A}} \mathcal{R}^{\uparrow}_{A} F^{\mathfrak{n}_{A} + \pi \varepsilon_{A}}_{\mathfrak{e}} \otimes \mathcal{R}^{\downarrow}_{A} F^{\mathfrak{n} - \mathfrak{n}_{A}}_{\mathfrak{e} + \varepsilon_{A}}$$

(see also the extended structure in Yvain's second lecture).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Under some assumptions on $\overline{\mathfrak{A}}(F, \hat{F})$, we have

 $(\bar{\Delta}\otimes \mathrm{id})\bar{\Delta}=(\mathrm{id}\otimes\bar{\Delta})\bar{\Delta}.$

This is in particular true in two special cases:

- $\mathfrak{A}^-(F,\hat{F}) := \{ \text{all forests } A : \hat{F} \subseteq A \subseteq F \}$
- ▶ $\mathfrak{A}^+(F, \hat{F}) := \{ \text{all forests } A : \hat{F} \subseteq A \subseteq F, \text{ and for every connected component } T \text{ of } F, T \cap A \text{ is a tree containing the root of } T \}.$

We call δ^- and δ^+ the corresponding operators.

There is a way to reformulate the previous construction so that

 $\mathcal{M}^{(13)(2)(4)} \big(\delta^- \otimes \delta^- \big) \delta^+ = (\mathrm{id} \otimes \delta^+) \delta^- \;,$

on \mathfrak{F} , where we used the notation

 $\mathcal{M}^{(13)(2)(4)}(\tau_1 \otimes \tau_2 \otimes \tau_3 \otimes \tau_4) = (\tau_1 \cdot \tau_3 \otimes \tau_2 \otimes \tau_4) \ .$

This allows to define an explicit action of the renormalization group on the structure group of a regularity structure.

(See [D. Calaque, K. Ebrahimi-Fard and D. Manchon, 2011] for another appearance of this formula).

The advantage of this construction is its universality. For each equation, by a projection one finds the correct Hopf algebra/co-module.

イロト イヨト イヨト イヨト

In the case of the positive renormalization, Yvain has already mentioned the following formula:

 $\Pi_x \tau = (\Pi \otimes f_x) \Delta \tau = \Pi \Gamma_{f_x} \tau$

where f_x is suitably defined. Moreover $\Gamma_{xy} = \Gamma_{f_x}^{-1} \Gamma_{f_y}$.

This formula relates two canonical objects, Π and Π_x , via the positive renormalization.

▲帰▶ ▲ 国▶ ▲ 国▶

Taylor expansions and negative renormalization

Let $T_{\mathfrak{e}}^{\mathfrak{n}}$ be a labelled tree. We recall that the renormalised $\hat{\Pi}^{\varepsilon}$ is given by

$$\begin{split} \hat{\Pi}^{\varepsilon} T^{\mathfrak{n}}_{\mathfrak{e}} &= \Pi M_{\varepsilon} T^{\mathfrak{n}}_{\mathfrak{e}} = \\ &= \sum_{\mathcal{A} \in \mathfrak{A}(T)} \sum_{\mathfrak{e}_{\mathcal{A}}, \mathfrak{n}_{\mathcal{A}}} \frac{1}{\mathfrak{e}_{\mathcal{A}}!} \binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}} \ell_{\varepsilon} \left(\Pi_{-} \mathcal{R}^{\uparrow}_{\mathcal{A}} T^{\mathfrak{n}_{\mathcal{A}} + \pi \mathfrak{e}_{\mathcal{A}}}_{\mathfrak{e}} \right) \Pi \mathcal{R}^{\downarrow}_{\mathcal{A}} T^{\mathfrak{n} - \mathfrak{n}_{\mathcal{A}}}_{\mathfrak{e} + \mathfrak{e}_{\mathcal{A}}}. \end{split}$$

This is a (random) function on $(\mathbb{R}^d)^{N_T}$.

Let us suppose that *T* contains exactly *n* subtrees $T_i \subset T$ such that $r_i := -|(T_i)^0_{\mathfrak{e}}| > 0$ and that they are pairwise disjoint.

We set for $i = 1, \ldots, n$

$$F_i(y_v, v \in N_{T_i}) := \prod_{v \in N_{T_i} \setminus \{\rho_{T_i}\}} (y_v)^{\mathfrak{n}(v)} \prod_{e \in E_{\partial T_i}} G^{(\mathfrak{e}(e))}(y_{e_+} - y_{e_-}).$$

Taylor expansions and negative renormalization

Now for $F : \mathbb{R}^{dN} \to \mathbb{R}, r \in \mathbb{R}, v \in \mathbb{R}^{dN}$, we define $\mathfrak{T}_{r,v}K : \mathbb{R}^{dN} \to \mathbb{R}$ as

$$\mathfrak{T}_{r,v}F(y) := F(y) - \sum_{0 \le |j|_{\mathfrak{s}} < r} \frac{(y-v)^{j}}{j!} F^{(j)}(v),$$

namely $\mathfrak{T}_{r,v}F$ is the remainder of the Taylor expansion of F of order r around v. Then we find

$$\hat{\Pi}^{\varepsilon} T^{\mathfrak{n}}_{\mathfrak{e}}(y_{v}, v \in N_{T}) = \prod_{v \notin \cup_{i} N_{T_{i}}} (y_{v})^{\mathfrak{n}(v)} \prod_{e \in E_{T} \setminus \cup_{i} E_{\partial T_{i}}} G^{(\mathfrak{e}(e))}(y_{e_{+}} - y_{e_{-}}) \prod_{i=1}^{n} \mathfrak{T}_{r'_{i}, y_{\rho_{T_{i}}}} F_{i}(y_{v}, v \in N_{T_{i}})$$

where for $i = 1, \ldots, n$

$$F_i(y_{\nu},\nu\in N_{T_i}):=\prod_{\nu\in N_{T_i}\setminus\{\rho_{T_i}\}}(y_{\nu})^{\mathfrak{n}(\nu)}\prod_{e\in E_{\partial T_i}}G^{(\mathfrak{c}(e))}(y_{e_+}-y_{e_-}).$$

「日本・日本・日本・

The previous result is called in QFT the BPHZ renormalization and is due to Bogoliubov-Parasiuk-Hepp-Zimmermann. (See Ajay Chandra's talk tomorrow)

The previous result is called in QFT the BPHZ renormalization and is due to Bogoliubov-Parasiuk-Hepp-Zimmermann. (See Ajay Chandra's talk tomorrow)

That's fine for me: the only problem is the P.

Thanks

æ