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Purpose of this talk

Give you an impression of what are Tensorial Field Theories, and why people study them.

Figure : ”Potsdamer Platz bei Nacht”, Lesser Ury, 1920s
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Group Field Theory: what is it?

It is an approach to quantum gravity at the crossroad of loop quantum gravity (LQG)
and matrix/tensor models.

A simple definition:�



�
	A Group Field Theory (GFT) is a non-local quantum field theory defined on

a group manifold.

The group manifold is auxiliary: should not be interpreted as space-time!

Rather, the Feynman amplitudes are thought of as describing space-time
processes → QFT of space-time rather than on space-time.

Specific non-locality: determines the combinatorial structure of space-time
processes (graphs, 2-complexes, triangulations...).

Recommended reviews:
L. Freidel, ”Group Field Theory: an overview”, 2005
D. Oriti, ”The microscopic dynamics of quantum space as a group field theory”, 2011
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General structure of a GFT and long-term objectives

Typical form of a GFT: field ϕ(g1, . . . , gd), g` ∈ G , with partition function

Z =

∫
[Dϕ]Λ exp

−ϕ · K · ϕ+
∑
{V}

tV V · ϕnV

 =
∑

kV1
,...,kVi

∏
i

(tVi )
kVi {SF amplitudes}

Main objectives of the GFT research programme:

1 Model building: define the theory space.
e.g. spin foam models + combinatorial considerations (tensor models) → d, G, K
and {V}.

2 Perturbative definition: prove that the spin foam expansion is consistent in some
range of Λ.
e.g. perturbative multi-scale renormalization.

3 Systematically explore the theory space: effective continuum regime reproducing
GR in some limit?
e.g. functional RG, constructive methods, condensate states...
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Tensorial locality and combinatorial representation of pseudo-manifolds
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Matrix models and random surfaces [t’Hooft, Polyakov, Kazakov, David,... ’70s ’80s]

Partition function for N × N symmetric matrix:

Z(N, λ) =

∫
[dM] exp

(
−1

2
TrM2 +

λ

N1/2
TrM3

)
Large N expansion → ensembles of combinatorial maps:

Z(N, λ) =
∑

triangulation ∆

λn∆

s(∆)
A∆(N) =

∑
g∈N

N2−2g Zg (λ)

Continuum limit of Z0: tune λ→ λc ⇒ very refined triangulations dominate.
(Z0(λ) ∼ |λ− λc |2−γ)

⇒ definition of universal 2d random geometries:

do not depend on the details of the discretization, i.e. on the type of trace invariants
used in the action;

similarly, Brownian map rigorously constructed as a scaling limit of infinite
triangulations and 2p-angulations of the sphere. [Le Gall, Miermont ’13]
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Colored cell decompositions of surfaces

Gluing of 2p-angles:

0

1
2

0

0

0

2

2

1 1

Duality:

3−colored graph ←→ colored triangulation

node ←→ triangle

line ←→ edge

bicolored cycle ←→ vertex

Any orientable surface with boundaries can be represented by such a 3-colored graph.
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Colored cell decompositions of pseudo-manifolds

Works in any dimension, e.g. in 3d:

0
1

2

3 0

12

3

Colored structure ⇒ unambiguous prescription for how to glue d-simplices along their
sub-simplices.

(d + 1)−colored graph ←→ colored triangulation of dimension d

node ←→ d−simplex

connected component with k colors ←→ (d − k)−simplex�
�

�


Theorem: [Pezzana ’74] Any PL manifold can be represented by a colored graph.
In general, a (d + 1)-colored graph represents a triangulated pseudo-manifold of
dimension d .

⇒ Crystallisation theory [Cagliardi, Ferri et al. ’80s]

Only recently introduced in GFTs / tensor models [Gurau ’09...]
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Trace invariants

Trace invariants of fields ϕ(g1, g2, . . . , gd) labelled by d-colored bubbles b:

1 1

3

3

2

2

Trb(ϕ,ϕ) =

∫
[dgi ]

6 ϕ(g6, g2, g3)ϕ(g1, g2, g3)

ϕ(g6, g4, g5)ϕ(g1, g4, g5)

(d = 2) · · ·

(d = 3) · · ·

(d = 4) · · ·
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Panorama of tensorial theories

Tensor Models: Ti1···id , ik ∈ {1, . . . ,N}
1/N expansion dominated by spheres [Gurau ’11...];
continuum limit of the leading order [Bonzom, Gurau, Riello, Rivasseau ’11] → ’branched
polymer’ [Gurau, Ryan ’13];
double-scaling limit [Dartois, Gurau, Rivasseau ’13; Gurau, Schaeffer ’13; Bonzom, Gurau,

Ryan, Tanasa ’14];
Schwinger-Dyson equations [Gurau ’11 ’12; Bonzom ’12];
non-perturbative results [Gurau ’11 ’13; Delepouve, Gurau, Rivasseau ’14];
’multi-orientable’ models [Tanasa ’11, Dartois, Rivasseau, Tanasa ’13; Raasaakka, Tanasa ’13;

Fusy, Tanasa ’14], O(N)⊗d -invariant models [SC, Tanasa ’15], and new scalings [Bonzom

’12; Bonzom, Delepouve, Rivasseau ’15];
symmetry breaking to matrix phase [Benedetti, Gurau ’15];
...

Tensorial Group Field Theories: ϕ(g1, . . . , gd), g` ∈ G .

Derivative operators and non-trivial renormalization [Ben Geloun, Rivasseau ’11...]

Asymptotic freedom [Ben Geloun ’12...]

Heavier use of the group structure: spin foam constraints [Oriti, Rivasseau, SC ’12 ’13...]

�



�
	Mathematical objective: step-by-step generalization of standard renormalization

techniques, until we are able to tackle 4d quantum gravity proposals.

Sylvain Carrozza (Uni. Bordeaux) Renormalizable Tensorial Field Theories Paths to, from and in renormalization 11 / 24



Panorama of tensorial theories

Tensor Models: Ti1···id , ik ∈ {1, . . . ,N}
1/N expansion dominated by spheres [Gurau ’11...];
continuum limit of the leading order [Bonzom, Gurau, Riello, Rivasseau ’11] → ’branched
polymer’ [Gurau, Ryan ’13];
double-scaling limit [Dartois, Gurau, Rivasseau ’13; Gurau, Schaeffer ’13; Bonzom, Gurau,

Ryan, Tanasa ’14];
Schwinger-Dyson equations [Gurau ’11 ’12; Bonzom ’12];
non-perturbative results [Gurau ’11 ’13; Delepouve, Gurau, Rivasseau ’14];
’multi-orientable’ models [Tanasa ’11, Dartois, Rivasseau, Tanasa ’13; Raasaakka, Tanasa ’13;

Fusy, Tanasa ’14], O(N)⊗d -invariant models [SC, Tanasa ’15], and new scalings [Bonzom

’12; Bonzom, Delepouve, Rivasseau ’15];
symmetry breaking to matrix phase [Benedetti, Gurau ’15];
...

Tensorial Group Field Theories: ϕ(g1, . . . , gd), g` ∈ G .

Derivative operators and non-trivial renormalization [Ben Geloun, Rivasseau ’11...]

Asymptotic freedom [Ben Geloun ’12...]

Heavier use of the group structure: spin foam constraints [Oriti, Rivasseau, SC ’12 ’13...]�



�
	Mathematical objective: step-by-step generalization of standard renormalization

techniques, until we are able to tackle 4d quantum gravity proposals.

Sylvain Carrozza (Uni. Bordeaux) Renormalizable Tensorial Field Theories Paths to, from and in renormalization 11 / 24



Tensorial Group Field Theories

1 Research context and motivations

2 Tensorial locality and combinatorial representation of pseudo-manifolds

3 Tensorial Group Field Theories

4 Perturbative renormalizability

5 Summary and outlook
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Definition of TGFTs

Ansatz akin to a ’local potential approximation’:

SΛ(ϕ,ϕ) = ϕ ·

(
−
∑
`

∆`

)
· ϕ+ S int

Λ (ϕ,ϕ)

Subtlety: invariance properties on ϕ imposed by spin foam constraints.

Partition function: (cut-off
∑d
`=1 p

2
` . Λ2)

ZΛ =

∫
dµCΛ (ϕ,ϕ) e−Sint

Λ (ϕ,ϕ) .

S int
Λ (ϕ,ϕ) is local:

S int
Λ (ϕ,ϕ) =

∑
b∈B

tΛ
b Trb(ϕ,ϕ) =

d=3
tΛ

2 + tΛ
4 + tΛ

6 + . . .

Gaussian measure dµC with possibly degenerate covariance:

C = P
(
−
∑
`

∆`

)−1

P

where P is a projector implementing the relevant constraints on the fields.
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Feynman amplitudes

Perturbative expansion in the coupling constants tb:

Z =
∑
G

(∏
b∈B

(−tb)nb(G)

)
AG

Feynman graphs G:

g1
g2

g3
=

∫
dg1 dg2 dg3 . . .

= δ(gg̃−1)
g g̃

g1 g̃1
g2

g3 g̃3

g̃2 = C(g1, g2, g3; g̃1, g̃2, g̃3)

Covariances associated to the dashed, color-0 lines.
Face of color ` = connected set of (alternating) color-0 and color-` lines.
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TGFTs with gauge invariance condition

Gauge invariance condition

∀h ∈ G , ϕ(g1, . . . , gd) = ϕ(g1h, . . . , gdh)

Common to all Spin Foam models: introduces a dynamical discrete connection at
the level of the amplitudes.

Resulting propagator, including a regulator Λ (∼
∑
` p

2
` ≤ Λ2):

CΛ(g`; g
′
`) =

∫ +∞

Λ−2

dα

∫
dh

d∏
`=1

Kα(g`hg
′−1
` ) , h{g`} {g′`}

where Kα is the heat kernel on G at time α.

The amplitudes are best expressed in terms of the faces of the Feynman graphs:

h3 , α3 h2 , α2

h1 , α1

f ←→ K α1+ α2+ α3 (h1h2h3)
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Perturbative renormalizability

1 Research context and motivations
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5 Summary and outlook
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Overview�



�
	Goal: check that the perturbative expansion - and henceforth the connection to

spin foam models - is consistent.

Types of models considered so far:

’combinatorial’ models on U(1)D → non-trivial propagators, but group structure
otherwise auxiliary;

[Ben Geloun, Rivasseau ’11; Ben Geloun, Ousmane Samary ’12; Ben Geloun, Livine ’12...]

models with ’gauge invariance’ on U(1)D and SU(2) → non-trivial propagators + one
key dynamical ingredient of spin foam models.

[SC, Oriti, Rivasseau ’12 ’13; Ousmane Samary, Vignes-Tourneret ’12;

SC ’14 ’14; Lahoche, Oriti, Rivasseau ’14]

Methods:

multiscale analysis: allows to rigorously prove renormalizability at all orders in
perturbation theory;

Connes–Kreimer algebraic methods [Raasakka, Tanasa ’13; Avohou, Rivasseau, Tanasa ’15];

loop-vertex expansion: non-perturbative method allowing to resum the perturbative
series [Gurau, Rivasseau,... ’13].
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Power-counting theorem

Goal: classify divergences according to the combinatorial properties of the graphs.

Theorem

If G has dimension D, the UV divergences arise from subgraphs H with degree of
divergence

ω(H) ≥ 0 ,

where ω is defined by

ω = −2L + D F in a model without gauge inv. condition; [Ben Geloun, Rivasseau ’11]

ω = −2L + D (F−R) in a model with gauge inv. condition; [Oriti, Rivasseau, SC ’12]

and R(H) is the rank of the incidence matrix between lines and faces of H.

Idea of proof: Multiscale analysis

Decompose propagators:

C =

∫
dα . . . =

∑
i∈N

∫ M−2(i−1)

M−2i

dα . . . =
∑
i∈N

Ci

Decompose amplitudes according to µ = {ie}: AG =
∑
µ

AG,µ.

Optimize single-slice bounds according to µ → tree-like inclusion structure of
divergent subgraphs of AG,µ.
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TGFTs with gauge invariance condition: classification

Power-counting analysis ⇒ classification of allowed interacting models:
[Oriti, Rivasseau, SC ’13]

d = rank D = dim(G) order explicit examples
3 3 6 G = SU(2) [Oriti, Rivasseau, SC ’13]

3 4 4 G = SU(2)×U(1) [SC ’14]

4 2 4
5 1 6 G = U(1) [Ousmane Samary, Vignes-Tourneret ’12]

6 1 4 G = U(1) [Ousmane Samary, Vignes-Tourneret ’12]

3 2 any
4 1 any G = U(1) [Oriti, Rivasseau, SC ’12]

3 1 any

d = D = 3 with G = SU(2) is the only case for which a geometric interpretation is
possible.

Analogy with ordinary scalar field theory: at fixed d = 3
ϕ6 model in D = 3;
ϕ4 model in D = 4.

(ε-expansion [SC ’14])
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Quasi-locality of the interactions�



�
	Divergent subgraphs must be quasi-local, i.e. look like trace invariants at high

scales. Always the case in known models, but non–trivial!

ϕ(g1)

ϕ(g2)

ϕ(g3)

ϕ(g4)

∼
ϕ(g3)

ϕ(g4)

ϕ(g1)

ϕ(g2)

K× + · · ·

h1 , α1

h2 , α2

1

23

∫
dα1dα2

∫
dh1dh2

[
Kα1+α2

(h1h2)
]2
∫

[
∏
i<j

dgij ] Kα1
(g11h1g

−1
31 )Kα2

(g−1
21 h2g41)

δ(g12g
−1
22 )δ(g13g

−1
22 )δ(g42g

−1
32 )δ(g43g

−1
33 )ϕ(g1)ϕ(g2)ϕ(g3)ϕ(g4)

This property is not generic in TGFTs → ”traciality” criterion:

flatness condition: the parallel transports must peak around 1l (up to gauge);

combinatorial condition: connected boundary graph.

Nice interplay between structure of divergences and topology → renormalizable
interactions are spherical.
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Renormalized amplitudes and BPHZ theorem

Definition of renormalized amplitudes la Bogoliubov:

Aren
G :=

 ∑
F⊂D(G)

∏
m∈F

(−τm)

AG
D(G): set of connected divergent subgraphs;

F : inclusion forests of connected divergent subgraphs;

τm: contraction operator associated to the divergent subgraph m → extracts its
’local’ divergent part.

Finiteness theorem

There exists a constant K > 0 such that:

|Aren
G | ≤ K L(G)|D(G)|!

Idea of proof:

Use multi-scale representation of the amplitudes;

within each AG,µ, no overlapping divergences → finiteness from well-identified
counter-terms;

show that the sum over µ converges.
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Summary and outlook

Summary:
Colored graphs → convenient representations of pseudo-manifolds in arbitrary d .

Tensor models and tensorial field theories generate such colored graphs in
perturbative expansion → generalizations of matrix models in arbitrary dimension.

Perturbative renormalizability well-understood, despite the complications introduced
by the new notion of locality (and non-commutative group structures).

Not explained in this talk: Asymptotic freedom quite generic, especially for quartic
models → UV complete GFTs. [Ben Geloun ’12... Rivasseau ’15])

On-going efforts:
Non-perturbative aspects:

constructive methods [Gurau, Rivasseau ’13; Lahoche ’15]
functional renormalization group: Wetterich [Benedetti, Ben Geloun, Oriti ’14...] and
Polchinski [Krajewski, Toriumi ’15] equations.

Hints of non-trivial fixed points, similar to Wilson-Fisher fixed point
→ phase transitions in quantum gravity? [Oriti ’09...]

4d geometric data → further constraints. Renormalizable models with Euclidean
signature (group: Spin(4))? [Lahoche, Oriti, SC wip]

Generalization to Lorentzian signature (group: SL(2,C)): we need other methods!
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Thank you for your attention
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