

Renormalizable Tensorial Field Theories as Models of Quantum Geometry

Sylvain Carrozza

University of Bordeaux, LaBRI

Universität Potsdam, 8/02/2016

"Paths to, from and in renormalization"

Give you an impression of what are Tensorial Field Theories, and why people study them.

Figure : "Potsdamer Platz bei Nacht", Lesser Ury, 1920s

Renormalizable Tensorial Field Theories

1 Research context and motivations

2 Tensorial locality and combinatorial representation of pseudo-manifolds

3 Tensorial Group Field Theories

Perturbative renormalizability

5 Summary and outlook

It is an approach to quantum gravity at the crossroad of loop quantum gravity (LQG) and matrix/tensor models.

A simple definition:

A Group Field Theory (GFT) is a non-local quantum field theory defined on a group manifold.

It is an approach to quantum gravity at the crossroad of loop quantum gravity (LQG) and matrix/tensor models.

A simple definition:

A Group Field Theory (GFT) is a non-local quantum field theory defined on a group manifold.

- The group manifold is auxiliary: should not be interpreted as space-time!
- Rather, the Feynman amplitudes are thought of as describing space-time processes → QFT of space-time rather than on space-time.
- Specific non-locality: determines the combinatorial structure of space-time processes (graphs, 2-complexes, triangulations...).

It is an approach to quantum gravity at the crossroad of loop quantum gravity (LQG) and matrix/tensor models.

A simple definition:

A Group Field Theory (GFT) is a non-local quantum field theory defined on a group manifold.

- The group manifold is auxiliary: should not be interpreted as space-time!
- Rather, the Feynman amplitudes are thought of as describing space-time processes → QFT of space-time rather than on space-time.
- Specific non-locality: determines the combinatorial structure of space-time processes (graphs, 2-complexes, triangulations...).

Recommended reviews:

L. Freidel, "Group Field Theory: an overview", 2005 D. Oriti, "The microscopic dynamics of quantum space as a group field theory", 2011

General structure of a GFT and long-term objectives

Typical form of a GFT: field $\varphi(g_1, \ldots, g_d)$, $g_\ell \in G$, with partition function

$$Z = \int [\mathcal{D}\varphi]_{\wedge} \exp\left(-\varphi \cdot \mathcal{K} \cdot \varphi + \sum_{\{\mathcal{V}\}} t_{\mathcal{V}} \,\mathcal{V} \cdot \varphi^{n_{\mathcal{V}}}\right) = \sum_{k_{\mathcal{V}_{1}}, \dots, k_{\mathcal{V}_{i}}} \prod_{i} (t_{\mathcal{V}_{i}})^{k_{\mathcal{V}_{i}}} \{\text{SF amplitudes}\}$$

Main objectives of the GFT research programme:

Model building: define the theory space.
 e.g. spin foam models + combinatorial considerations (tensor models) → d, G, K and {V}.

Perturbative definition: prove that the spin foam expansion is consistent in some range of Λ.
 e.g. perturbative multi-scale renormalization.

 Systematically explore the theory space: effective continuum regime reproducing GR in some limit?
 e.g. functional RG, constructive methods, condensate states...

Sylvain Carrozza (Uni. Bordeaux)

Research context and motivations

2 Tensorial locality and combinatorial representation of pseudo-manifolds

3 Tensorial Group Field Theories

Perturbative renormalizability

5 Summary and outlook

• Partition function for $N \times N$ symmetric matrix:

$$\mathcal{Z}(N,\lambda) = \int [\mathrm{d}M] \exp\left(-\frac{1}{2}\mathrm{Tr}M^2 + \frac{\lambda}{N^{1/2}}\mathrm{Tr}M^3
ight)$$

• Large N expansion \rightarrow ensembles of combinatorial maps:

$$\mathcal{Z}(N,\lambda) = \sum_{\text{triangulation }\Delta} \frac{\lambda^{n_{\Delta}}}{s(\Delta)} \mathcal{A}_{\Delta}(N) = \sum_{g \in \mathbb{N}} N^{2-2g} \mathcal{Z}_{g}(\lambda)$$

• Continuum limit of \mathcal{Z}_0 : tune $\lambda \to \lambda_c \Rightarrow$ very refined triangulations dominate. $(\mathcal{Z}_0(\lambda) \sim |\lambda - \lambda_c|^{2-\gamma})$ • Partition function for $N \times N$ symmetric matrix:

$$\mathcal{Z}(N,\lambda) = \int [\mathrm{d}M] \exp\left(-\frac{1}{2}\mathrm{Tr}M^2 + \frac{\lambda}{N^{1/2}}\mathrm{Tr}M^3
ight)$$

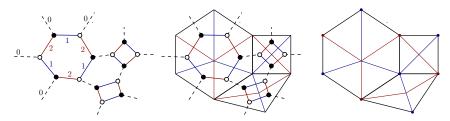
• Large N expansion \rightarrow ensembles of combinatorial maps:

$$\mathcal{Z}(\mathsf{N},\lambda) = \sum_{\text{triangulation }\Delta} \frac{\lambda^{n_{\Delta}}}{s(\Delta)} \, \mathcal{A}_{\Delta}(\mathsf{N}) = \sum_{g \in \mathbb{N}} \, \mathsf{N}^{2-2g} \, \mathcal{Z}_{g}(\lambda)$$

- Continuum limit of \mathcal{Z}_0 : tune $\lambda \to \lambda_c \Rightarrow$ very refined triangulations dominate. $(\mathcal{Z}_0(\lambda) \sim |\lambda - \lambda_c|^{2-\gamma})$
- \Rightarrow definition of universal 2d random geometries:
 - do not depend on the details of the discretization, i.e. on the type of trace invariants used in the action;
 - similarly, Brownian map rigorously constructed as a scaling limit of infinite triangulations and 2*p*-angulations of the sphere. [Le Gall, Miermont '13]

Colored cell decompositions of surfaces

Gluing of 2*p*-angles:



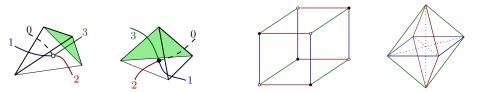
Duality:

- ${\rm 3-colored \; graph} \quad \longleftrightarrow \quad {\rm colored \; triangulation}$
 - node \longleftrightarrow triangle
 - $\lim e \longleftrightarrow edge$
 - bicolored cycle \longleftrightarrow vertex

Any orientable surface with boundaries can be represented by such a 3-colored graph.

Colored cell decompositions of pseudo-manifolds

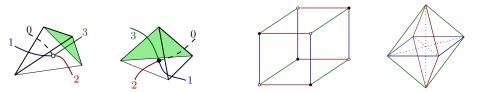
Works in any dimension, e.g. in 3d:



Colored structure \Rightarrow unambiguous prescription for how to glue *d*-simplices along their sub-simplices.

Colored cell decompositions of pseudo-manifolds

Works in any dimension, e.g. in 3d:



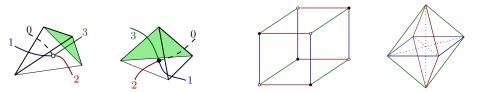
Colored structure \Rightarrow unambiguous prescription for how to glue *d*-simplices along their sub-simplices.

$$(d+1)$$
-colored graph \longleftrightarrow colored triangulation of dimension d
node \longleftrightarrow d -simplex

connected component with k colors \leftrightarrow (d - k)-simplex

Colored cell decompositions of pseudo-manifolds

Works in any dimension, e.g. in 3d:



Colored structure \Rightarrow unambiguous prescription for how to glue *d*-simplices along their sub-simplices.

$$(d+1)$$
-colored graph \longleftrightarrow colored triangulation of dimension d

 $\operatorname{node} \ \longleftrightarrow \ d{-}{\operatorname{simplex}}$

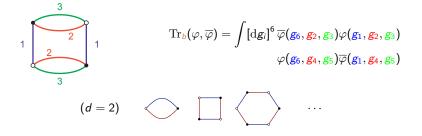
connected component with k colors \leftrightarrow (d - k)-simplex

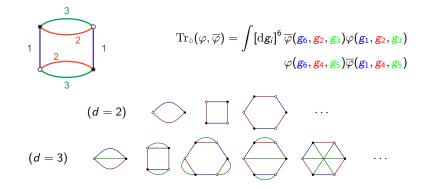
<u>Theorem:</u> [Pezzana '74] Any PL manifold can be represented by a colored graph. In general, a (d + 1)-colored graph represents a triangulated **pseudo-manifold** of dimension *d*.

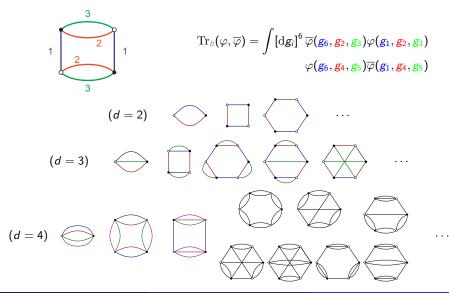
\Rightarrow Crystallisation theory [Cagliardi, Ferri et al. '80s] Only recently introduced in GFTs / tensor models [Gurau '09...]

Sylvain Carrozza (Uni. Bordeaux)

$$\operatorname{Tr}_{b}(\varphi,\overline{\varphi}) = \int [\mathrm{d}g_{i}]^{6} \,\overline{\varphi}(g_{6},g_{2},g_{3})\varphi(g_{1},g_{2},g_{3})$$
$$\varphi(g_{6},g_{4},g_{5})\overline{\varphi}(g_{1},g_{4},g_{5})$$







Tensor Models:

$T_{i_1...i_k}, i_k \in \{1, ..., N\}$

- 1/N expansion dominated by spheres [Gurau '11...];
- continuum limit of the leading order [Bonzom, Gurau, Riello, Rivasseau '11] \rightarrow 'branched polymer' [Gurau, Ryan '13]:
- double-scaling limit [Dartois, Gurau, Rivasseau '13; Gurau, Schaeffer '13; Bonzom, Gurau, Ryan, Tanasa '14];
- Schwinger-Dyson equations [Gurau '11 '12; Bonzom '12];
- non-perturbative results [Gurau '11 '13; Delepouve, Gurau, Rivasseau '14];
- 'multi-orientable' models [Tanasa '11, Dartois, Rivasseau, Tanasa '13; Raasaakka, Tanasa '13; Fusy, Tanasa '14], $O(N)^{\otimes d}$ -invariant models [SC, Tanasa '15], and new scalings [Bonzom '12; Bonzom, Delepouve, Rivasseau '15];
- symmetry breaking to matrix phase [Benedetti, Gurau '15];
- ٥ ...
- Tensorial Group Field Theories:

- $\varphi(g_1,\ldots,g_d), g_\ell \in G.$
- Derivative operators and non-trivial renormalization
- Asymptotic freedom
- Heavier use of the group structure: spin foam constraints [Oriti, Rivasseau, SC '12 '13...]

[Ben Geloun, Rivasseau '11...] [Ben Geloun '12...]

• Tensor Models:

$T_{i_1\cdots i_d}, i_k \in \{1,\ldots,N\}$

- 1/N expansion dominated by spheres [Gurau '11...];
- continuum limit of the leading order [Bonzom, Gurau, Riello, Rivasseau '11] → 'branched polymer' [Gurau, Ryan '13];
- double-scaling limit [Dartois, Gurau, Rivasseau '13; Gurau, Schaeffer '13; Bonzom, Gurau, Ryan, Tanasa '14];
- Schwinger-Dyson equations [Gurau '11 '12; Bonzom '12];
- non-perturbative results [Gurau '11 '13; Delepouve, Gurau, Rivasseau '14];
- 'multi-orientable' models [Tanasa '11, Dartois, Rivasseau, Tanasa '13; Raasaakka, Tanasa '13; Fusy, Tanasa '14], $O(N)^{\otimes d}$ -invariant models [SC, Tanasa '15], and new scalings [Bonzom '12; Bonzom, Delepouve, Rivasseau '15];
- symmetry breaking to matrix phase [Benedetti, Gurau '15];
- ...
- Tensorial Group Field Theories:
 - Derivative operators and non-trivial renormalization
 - Asymptotic freedom
 - Heavier use of the group structure: spin foam constraints [Oriti, Rivasseau, SC '12 '13...]

Mathematical objective: step-by-step generalization of standard renormalization techniques, until we are able to tackle 4d quantum gravity proposals.

 $\varphi(g_1,\ldots,g_d), \ g_\ell\in G.$

[Ben Geloun, Rivasseau '11...]

[Ben Geloun '12...]

Research context and motivations

Tensorial locality and combinatorial representation of pseudo-manifolds

Tensorial Group Field Theories

Perturbative renormalizability

5 Summary and outlook

• Ansatz akin to a 'local potential approximation':

$$S_{\Lambda}(arphi,\overline{arphi})=\overline{arphi}\cdot\left(-\sum_{\ell}\Delta_{\ell}
ight)\cdotarphi+m{S}^{\mathrm{int}}_{\Lambda}(arphi,\overline{arphi})$$

- Subtlety: invariance properties on φ imposed by spin foam constraints.
- Partition function: $(\text{cut-off } \sum_{\ell=1}^{d} p_{\ell}^2 \lesssim \Lambda^2)$

$$\mathcal{Z}_{\Lambda} = \int \mathrm{d} \mu_{\mathcal{C}_{\Lambda}}(\varphi,\overline{\varphi}) \, \mathrm{e}^{-S^{\mathrm{int}}_{\Lambda}(\varphi,\overline{\varphi})}$$

.

•
$$S^{\text{int}}_{\Lambda}(\varphi,\overline{\varphi})$$
 is local:

$$S^{\rm int}_{\Lambda}(\varphi,\overline{\varphi}) = \sum_{b\in\mathcal{B}} t^{\Lambda}_b \operatorname{Tr}_b(\varphi,\overline{\varphi}) \underset{d=3}{=} t^{\Lambda}_2 \longleftrightarrow + t^{\Lambda}_4 \longmapsto + t^{\Lambda}_6 \longleftrightarrow + \dots$$

• Gaussian measure $d\mu_{C}$ with possibly degenerate covariance:

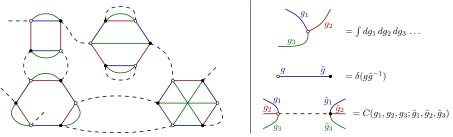
$$\boldsymbol{\mathcal{C}} = \boldsymbol{\mathcal{P}} \left(-\sum_{\ell} \boldsymbol{\Delta}_{\ell} \right)^{-1} \boldsymbol{\mathcal{P}}$$

where \mathcal{P} is a projector implementing the relevant constraints on the fields.

• Perturbative expansion in the coupling constants *t_b*:

$$\mathcal{Z} = \sum_{\mathcal{G}} \left(\prod_{b \in \mathcal{B}} (-t_b)^{n_b(\mathcal{G})} \right) \mathcal{A}_{\mathcal{G}}$$

• Feynman graphs *G*:



- Covariances associated to the dashed, color-0 lines.
- Face of color ℓ = connected set of (alternating) color-0 and color- ℓ lines.

• Gauge invariance condition

$$\forall \mathbf{h} \in \mathbf{G}, \qquad \varphi(\mathbf{g}_1, \ldots, \mathbf{g}_d) = \varphi(\mathbf{g}_1 \mathbf{h}, \ldots, \mathbf{g}_d \mathbf{h})$$

Common to **all** Spin Foam models: introduces a dynamical discrete connection at the level of the amplitudes.

• Gauge invariance condition

$$\forall \mathbf{h} \in \mathbf{G}, \qquad \varphi(\mathbf{g}_1, \ldots, \mathbf{g}_d) = \varphi(\mathbf{g}_1 \mathbf{h}, \ldots, \mathbf{g}_d \mathbf{h})$$

Common to **all** Spin Foam models: introduces a dynamical discrete connection at the level of the amplitudes.

• Resulting propagator, including a regulator Λ ($\sim \sum_{\ell} p_{\ell}^2 \leq \Lambda^2$):

$$C_{\Lambda}(g_{\ell};g_{\ell}') = \int_{\Lambda^{-2}}^{+\infty} \mathrm{d}\alpha \int \mathrm{d}h \prod_{\ell=1}^{d} K_{\alpha}(g_{\ell}hg_{\ell}'^{-1}), \qquad \{g_{\ell}\}\bullet \dots \bullet_{\{g_{\ell}'\}}$$

where K_{α} is the heat kernel on G at time α .

• Gauge invariance condition

$$\forall h \in G, \qquad \varphi(g_1, \ldots, g_d) = \varphi(g_1 h, \ldots, g_d h)$$

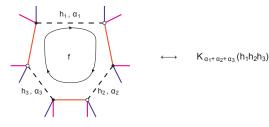
Common to **all** Spin Foam models: introduces a dynamical discrete connection at the level of the amplitudes.

• Resulting propagator, including a regulator Λ ($\sim \sum_\ell p_\ell^2 \leq \Lambda^2$):

$$C_{\Lambda}(g_{\ell};g_{\ell}') = \int_{\Lambda^{-2}}^{+\infty} \mathrm{d}\alpha \, \int \mathrm{d}h \prod_{\ell=1}^{d} K_{\alpha}(g_{\ell}hg_{\ell}'^{-1}), \qquad \{g_{\ell}\} \bullet \cdots \bullet \bullet_{\{g_{\ell}'\}}$$

where K_{α} is the heat kernel on G at time α .

• The amplitudes are best expressed in terms of the faces of the Feynman graphs:



Research context and motivations

2 Tensorial locality and combinatorial representation of pseudo-manifolds

3 Tensorial Group Field Theories

Perturbative renormalizability

5 Summary and outlook

Overview

<u>Goal</u>: check that the perturbative expansion - and henceforth the connection to spin foam models - is consistent.

- Types of models considered so far:
 - 'combinatorial' models on ${\rm U}(1)^D \to$ non-trivial propagators, but group structure otherwise auxiliary;

[Ben Geloun, Rivasseau '11; Ben Geloun, Ousmane Samary '12; Ben Geloun, Livine '12...]

• models with 'gauge invariance' on $U(1)^D$ and $SU(2) \rightarrow$ non-trivial propagators + one key dynamical ingredient of spin foam models.

[SC, Oriti, Rivasseau '12 '13; Ousmane Samary, Vignes-Tourneret '12; SC '14 '14; Lahoche, Oriti, Rivasseau '14]

Overview

<u>Goal</u>: check that the perturbative expansion - and henceforth the connection to spin foam models - is consistent.

- Types of models considered so far:
 - 'combinatorial' models on ${\rm U}(1)^D \to$ non-trivial propagators, but group structure otherwise auxiliary;

[Ben Geloun, Rivasseau '11; Ben Geloun, Ousmane Samary '12; Ben Geloun, Livine '12...]

• models with 'gauge invariance' on ${\rm U}(1)^D$ and ${\rm SU}(2)\to$ non-trivial propagators + one key dynamical ingredient of spin foam models.

[SC, Oriti, Rivasseau '12 '13; Ousmane Samary, Vignes-Tourneret '12; SC '14 '14; Lahoche, Oriti, Rivasseau '14]

- Methods:
 - multiscale analysis: allows to rigorously prove renormalizability at all orders in perturbation theory;
 - Connes-Kreimer algebraic methods [Raasakka, Tanasa '13; Avohou, Rivasseau, Tanasa '15];
 - loop-vertex expansion: non-perturbative method allowing to resum the perturbative series [Gurau, Rivasseau,... '13].

Goal: classify divergences according to the combinatorial properties of the graphs.

Power-counting theorem

Goal: classify divergences according to the combinatorial properties of the graphs.

Theorem

If G has dimension D, the UV divergences arise from subgraphs ${\mathcal H}$ with degree of divergence

$$\omega(\mathcal{H}) \geq 0$$
,

where ω is defined by

- $\omega = -2L + DF$ in a model without gauge inv. condition; [Ben Geloun, Rivasseau '11]
- $\omega = -2L + D(F R)$ in a model with gauge inv. condition; [0]

[Oriti, Rivasseau, SC '12]

and $R(\mathcal{H})$ is the rank of the incidence matrix between lines and faces of \mathcal{H} .

Power-counting theorem

Goal: classify divergences according to the combinatorial properties of the graphs.

Theorem

If G has dimension D, the UV divergences arise from subgraphs ${\mathcal H}$ with degree of divergence

$$\omega(\mathcal{H}) \geq 0$$
,

where ω is defined by

- $\omega = -2L + DF$ in a model without gauge inv. condition; [Ben Geloun, Rivasseau '11]
- $\omega = -2L + D(F R)$ in a model with gauge inv. condition; [Oriti, Rivasseau, SC '12]

and $R(\mathcal{H})$ is the rank of the incidence matrix between lines and faces of \mathcal{H} .

Idea of proof: Multiscale analysis

Decompose propagators:

$$C = \int \mathrm{d} lpha \ldots = \sum_{i \in \mathbb{N}} \int_{M^{-2i}}^{M^{-2(i-1)}} \mathrm{d} lpha \ldots = \sum_{i \in \mathbb{N}} C_i$$

- Decompose amplitudes according to $\mu = \{i_e\}$: $\mathcal{A}_{\mathcal{G}} = \sum \mathcal{A}_{\mathcal{G},\mu}$.
- Optimize single-slice bounds according to μ → tree-like inclusion structure of divergent subgraphs of A_{G,μ}.

TGFTs with gauge invariance condition: classification

Power-counting analysis \Rightarrow classification of allowed interacting models: [Oriti, Rivasseau, SC '13]

$d = \operatorname{rank}$	$D = \dim(G)$	order	explicit examples
3	3	6	${\cal G}={ m SU}(2)$ [Oriti, Rivasseau, SC '13]
3	4	4	${\cal G}={ m SU}(2) imes { m U}(1)$ [SC '14]
4	2	4	
5	1	6	${\cal G}={ m U}(1)$ [Ousmane Samary, Vignes-Tourneret '12]
6	1	4	${\cal G}={ m U}(1)$ [Ousmane Samary, Vignes-Tourneret '12]
3	2	any	
4	1	any	${\cal G}={ m U}(1)$ [Oriti, Rivasseau, SC '12]
3	1	any	

TGFTs with gauge invariance condition: classification

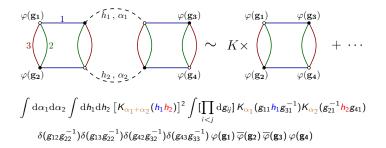
Power-counting analysis \Rightarrow classification of allowed interacting models: [Oriti, Rivasseau, SC '13]

$d = \operatorname{rank}$	$D = \dim(G)$	order	explicit examples
3	3	6	${\cal G}={ m SU}(2)$ [Oriti, Rivasseau, SC '13]
3	4	4	$G = \mathrm{SU}(2) imes \mathrm{U}(1)$ [SC '14]
4	2	4	
5	1	6	${\cal G}={ m U}(1)$ [Ousmane Samary, Vignes-Tourneret '12]
6	1	4	${\cal G}={ m U}(1)$ [Ousmane Samary, Vignes-Tourneret '12]
3	2	any	
4	1	any	${\cal G}={ m U}(1)$ [Oriti, Rivasseau, SC '12]
3	1	any	

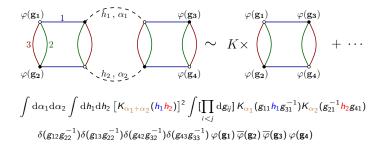
- d = D = 3 with G = SU(2) is the only case for which a geometric interpretation is possible.
- Analogy with ordinary scalar field theory: at fixed d = 3
 - φ^6 model in D = 3;
 - φ^4 model in D = 4.

Divergent subgraphs must be quasi-local, i.e. look like trace invariants at high scales. Always the case in known models, but non-trivial!

Divergent subgraphs must be quasi-local, i.e. look like trace invariants at high scales. Always the case in known models, but non-trivial!



Divergent subgraphs must be quasi-local, i.e. look like trace invariants at high scales. Always the case in known models, but non-trivial!



This property is not generic in TGFTs \rightarrow "traciality" criterion:

- flatness condition: the parallel transports must peak around 1 (up to gauge);
- combinatorial condition: connected boundary graph.

Nice interplay between structure of divergences and topology \rightarrow renormalizable interactions are spherical.

Sylvain Carrozza (Uni. Bordeaux)

Renormalized amplitudes and BPHZ theorem

Definition of renormalized amplitudes la Bogoliubov:

$$\mathcal{A}_{\mathcal{G}}^{ren} := \left(\sum_{\mathcal{F} \subset D(\mathcal{G})} \prod_{m \in \mathcal{F}} (- au_m)
ight) \mathcal{A}_{\mathcal{G}}$$

- $D(\mathcal{G})$: set of **connected** divergent subgraphs;
- \mathcal{F} : inclusion forests of connected divergent subgraphs;
- τ_m : contraction operator associated to the divergent subgraph $m \to$ extracts its 'local' divergent part.

Renormalized amplitudes and BPHZ theorem

Definition of renormalized amplitudes la Bogoliubov:

$$\mathcal{A}_{\mathcal{G}}^{ren} := \left(\sum_{\mathcal{F} \subset D(\mathcal{G})} \prod_{m \in \mathcal{F}} \left(-\tau_m\right)\right) \mathcal{A}_{\mathcal{G}}$$

- D(G): set of **connected** divergent subgraphs;
- \mathcal{F} : inclusion forests of connected divergent subgraphs;
- τ_m : contraction operator associated to the divergent subgraph $m \to$ extracts its 'local' divergent part.

Finiteness theorem

There exists a constant K > 0 such that:

 $|\mathcal{A}_{\mathcal{G}}^{ren}| \leq K^{L(\mathcal{G})}|D(\mathcal{G})|!$

Renormalized amplitudes and BPHZ theorem

Definition of renormalized amplitudes la Bogoliubov:

$$\mathcal{A}_{\mathcal{G}}^{ren} := \left(\sum_{\mathcal{F} \subset D(\mathcal{G})} \prod_{m \in \mathcal{F}} (- au_m)
ight) \mathcal{A}_{\mathcal{G}}$$

- D(G): set of connected divergent subgraphs;
- \mathcal{F} : inclusion forests of connected divergent subgraphs;
- τ_m : contraction operator associated to the divergent subgraph $m \to$ extracts its 'local' divergent part.

Finiteness theorem

There exists a constant K > 0 such that:

$$|\mathcal{A}_{\mathcal{G}}^{ren}| \leq K^{L(\mathcal{G})}|D(\mathcal{G})|!$$

Idea of proof:

- Use multi-scale representation of the amplitudes;
- within each A_{G,µ}, no overlapping divergences → finiteness from well-identified counter-terms;
- show that the sum over μ converges.

- 1 Research context and motivations
- 2 Tensorial locality and combinatorial representation of pseudo-manifolds
- 3 Tensorial Group Field Theories
- Perturbative renormalizability
- 5 Summary and outlook

Summary and outlook

- Summary:
 - Colored graphs \rightarrow convenient representations of pseudo-manifolds in arbitrary d.
 - Tensor models and tensorial field theories generate such colored graphs in perturbative expansion \rightarrow generalizations of matrix models in arbitrary dimension.
 - Perturbative renormalizability well-understood, despite the complications introduced by the new notion of locality (and non-commutative group structures).
 - Not explained in this talk: Asymptotic freedom quite generic, especially for quartic models → UV complete GFTs. [Ben Geloun '12... Rivasseau '15])

Summary and outlook

- Summary:
 - Colored graphs \rightarrow convenient representations of pseudo-manifolds in arbitrary d.
 - Tensor models and tensorial field theories generate such colored graphs in perturbative expansion \rightarrow generalizations of matrix models in arbitrary dimension.
 - Perturbative renormalizability well-understood, despite the complications introduced by the new notion of locality (and non-commutative group structures).
 - Not explained in this talk: Asymptotic freedom quite generic, especially for quartic models → UV complete GFTs. [Ben Geloun '12... Rivasseau '15])
- On-going efforts:
 - Non-perturbative aspects:
 - constructive methods [Gurau, Rivasseau '13; Lahoche '15]
 - functional renormalization group: Wetterich [Benedetti, Ben Geloun, Oriti '14...] and Polchinski [Krajewski, Toriumi '15] equations.
 - Hints of non-trivial fixed points, similar to Wilson-Fisher fixed point \rightarrow phase transitions in quantum gravity?
 - 4d geometric data \rightarrow further constraints. Renormalizable models with Euclidean signature (group: Spin(4))? [Lahoche, Oriti, SC wip] Generalization to Lorentzian signature (group: SL(2, \mathbb{C})): we need other methods!

[Oriti '09...]

Thank you for your attention

Sylvain Carrozza (Uni. Bordeaux)

Renormalizable Tensorial Field Theories