Hopf Algebras on Labelled Forests: Application to

Regularity Structures

Yvain Bruned
University of Warwick
(joint work with Martin Hairer and Lorenzo Zambotti)

February 2016, Potsdam



@ Introduction
© Labelled Trees

© Hopf Algebras

@ Extension of the structure



Introduction

Two renormalisations

The solution of a singular SPDE is described in the framework of
Regularity Structures by a Taylor expansion with new monomials:

N

u(y) = u(x) + Y ai(x) (Mxmi)(y) + r(x, )

i=1

where the 7; belong to an abstract space T. We will use Hopf
Algebras in order to build two groups:

@ The structure group (Positive renormalisation) which defines
My and the map 'y, used for changing the point of our
monomials.

@ The renormalisation group (Negative renormalisation) which
acts on the model (M, k) for proving the convergence.



Introduction

Hopf Algebra H

@ a product M : H ® H — H satisfying:
MM ®id) =M (id® M), (Associativity)
@ a unit 1 € H satisfying:
MART)=T=M(T®1),Vr € H.
@ a coproduct A : H — H ® H satisfying:
(A ®id)A = (id® A)A, (Coassociativity)
@ a counit 1* : ‘H — R satisfying:

VreH,(1"®id) At =7 = (1d ® 1*) AT.



Introduction

Hopf Algebra H

@ The coproduct and the counit are unital algebra
homomorphisms:

AM = Myegu(A®A),A1=121,
"M = Mg(1*®1%),1%(1) = 1.

@ An antipode map A : H — H obeying:

MA®id)A =11 = M(id @ A)A.



Introduction

Comodule and Groups

A vector space H is a right comodule over # if there exists
A:H — H & H such that:

(A®id) A= (ild® A)D, (d®1%)A =id.
If H* denotes the dual of H, then we set

G:={geH :g(nmn)=g(n)g(n), Vr,m e H}.

Let R={Tg:H—H, T,=(d®g)A, g€ G}. Then R is a
group for the composition law. Moreover, one has for f, g € G:

[Ty =Trog, fog=(fog)A, g'=g(A).




Introduction

The polynomial structure

Take H the linear span of the abstract polynomials {X* k € N}. It
is a Hopf algebra with 1 = X and:

@ The multiplicative coproduct A is given by

n
n
AX=X®1+1®X, AX"= Xk g xnk
R1+1®X, > <k> ®
k=0
o The counit 1* is defined by 1%(X*) = 1,_,.

@ The antipode A is multiplicative and given by A1 =1,
AX = —X.

@ The structure group is isomorphic to R and it is given by the
translation: Tz XK = (X + g(X))*

Fey X5 = (M) XK =T (X + y)k = (X +y — x)k.



Introduction

The Wick product

We look at a very simple example of negative renormalisation: the
powers of a standard gaussian r.v. £ with zero mean and covariance
c>0.

We consider the abstract set 7 = {=" : n € N}. Given the natural
definition

=" =¢"
we want to find M such that the renormalised n-th power of £ is
the Wick product:

MY=" = €7 = Hn(¢, c)

where H,, are generalised Hermite polynomials. For that we

consider the set F = {=" . ...- =" nq, ..., ngx € N} where the

product - is associative and commutative with neutral 1 = =0,



Introduction

Renormalisation map M

We define the following coproduct A by:

N A~ |

Al=1@1, A== Y " _=m.  =wagzn
n1!---nk!

m-+-+ng=n

A(E"-=m) = (A=") - (A=™)

with the convention that for k=1, onehas="® 1+ 1 =". We
consider the Hopf algebra # the linear span of . One way of
defining M is M = M, where

A~

M, = (6 &® Id)A7 E(En) = _C]]-(n:2)'



Introduction

Example

We compute one term of A=8 associated to

A= {{l1,l5},{l3,l7}}:
b1 0> W3 by Us Ve {7 VL3
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

0 s by U7 @ b Uy le [lg
[ ] [ ] [ ] [ ]



Labelled Trees

Rooted Trees

We define a framework in order to treat at the same time the two
renormalisations positive and negative.

A rooted tree T is a finite tree (a finite connected graph without
simple cycles) with a distinguished vertex, p = pr, called the root,
and a function [: L+ U ET — £, where

© edges of T are denoted by E = E;+ € N x N and nodes by
N = Nt

O leaves, denoted by L = L. Interior nodes, i.e. nodes which
are not leaves, are denotes by N = N\ L.
© We denote by 1 the (unique) labelled tree with L = ().

Q £ is a fixed non-empty set of types



Labelled Trees

Admissible Trees

Given a rooted tree T and a rooted subtree S C T, we say that S
is admissible in T if
QO LsCly
@ either ps = p, or there exists at least one leaf £ € L7\ Lg
with ps < /.

01 4 23 65 fe 67 lg

[ ]
DAV,



Labelled Trees

Forests

A forest F is a set of rooted trees denoted equivalently either by
{T1,..., Ty} orby Ty - Tp--- Ty, with the empty set denoted by 0.

Definition

Given a forest F = Ty - Tp -+ Ty, we denote by (F) the set of all
A=5-5---5, such that any two elements of A are disjoint.
Moreover for every S;, there exists T; such that S; is an admissible
tree in T;.




Labelled Trees

Operations on forests

4y lo {3 Uy l1 la U3 Uy

Letle.\I/. andezY,thenTl-ngv vand

PTy PTa PTy PTy

by Uy l3 Uy

TiTr =
o

In the next example, we compute the operations of
extraction-contraction for A = {51, 5} € 2A(T):

61 EQ Z3 Zs ée £7 68
AV 5 s b 0 b fs Ly

(7
oo ps, — R;T = O '\./° , RjT = P;{/ Ps,
P PSy PS> P



Labelled Trees

Labelled trees ¥ and forests §

Definition
Every T!' € T is described with a triple (7,e,n) where T is a
rooted tree endowed with

o an edge-labelling ¢: E — N9
e a node-labelling n: Ny — N¢.

We denote by § the set of labelled forests and denote a triple
(F,e,n) by F} € 3.

| A

Definition
We write () for the linear span of T. We denote (§) as the free
vector space generated by § equipped with the product -.




Labelled Trees

Link with the symbols

Let 7' € T,
e To u € L7, we associate a "noise", =)
e To e € Ey, we associate an abstract integrator I:Eg()

@ To u € Ny, we associate a monomial Xn(w),

b by U3 Ay

51 €2 51 62

L(E)? - \/ XI(Z)Z > \;
p p



Labelled Trees

Operations on the labels

@ The product in T is given by (T, 7A'Eﬁ) — T8, T := TT where
the labels ¢ and 11 are obtained by restriction except for the
root, i(p7) == n(pr) + fi(p3).

@ The product in § is given by (F}, l:_g‘) + FI, where
F :=F - F, and labels are obtained by restriction on F and F.

@ The forest RTL\F“ inherits edge- and node-labels from F! by

4
simple restriction.

@ The forest Ri‘Fe“ inherits the edge-labels from F by simple
restriction, while the node-labels are the sums of the labels

over equivalence classes:

n(p)E D ).

Y Yy~ AX



Hopf Algebras

Computation with A

Let A C 2A, we define an infinite triangular linear map

A: (F) = (F) @ (F) by

AF; _ Z Z < > RT F“A+7T9A ® fRi F:+elj4A

AEQ[ ) A, eA

by Uy b3 U5 lg 47 Ug

.\I/. £.4 e /K.?,é fs l7 01 £o Z5 Ks
4
A, 67 PAY A, T .\./. IVI ® PMM
14 PA; PA2 p
Uy by b3 U5 Le U7 Ug l3 le U7
\/ €4\. .\./. ./. £.4 ./. .\.
Ny Ny N N\ b bz ls s

Q[+7 5+ : o\ / — o\ /o ® QV



Hopf Algebras

Coassociativity

Theorem
If 2 satisfies certain properties then the identity
(id ® A)AF! = (A ® id)AF}

holds for every F}' € §. Moreover A is multiplicative, i.e. for all
Fi,F2 €% _ _ _
A(F - R) = (AF) - (AF).

Finally A: (%) — § ® (T), where (%) is the linear span of T.




Hopf Algebras

Homogeneity

For a labelled tree T!' € T, we define its homogeneity by

(4

Te= > @ls+ Y0 mGls— D le(e)ls.

velTUET XGNT ecET

To a symbol 7 we associate a real number |7| called its
homogeneity: |Z4|s = |as, |X]s =1, |1]s =0

|T1...Tnls = |T1]s + - + |Tnls) If(T) =1|7ls + |5]s — | kls-



Hopf Algebras

Positive Renormalisation

Definition
A rooted tree T € T is said to be elementary if it either consists

only of the root or has only one edge incident to the root. Let < be
the corresponding set of labelled trees.

Definition

| A\

Let Tﬂ’r C < be the set of elementary labelled trees with positive
homogeneity and zero label at the root. Then T is the set of
labelled trees T such that T is a product of trees in T where

N = i £ ) .

A




Hopf Algebras

Positive Renormalisation

Let N, : ¥ — T, the multiplicative projection on trees with
positive homogeneity. We define :

AR 5 (D)@ (TL),  A=(doMN)s"

At <T+> — <T+> & <S+>, At = (I'I+ & I'|+)5+.

The algebra (T) endowed with the product (7,7) — 77 and the
coproduct A" is a Hopf algebra. Moreover A turns (%) into a right
comodule over (¥.).




Hopf Algebras

Positive renormalisation Group : Structure Group

We define H as (T4). If H denotes the dual of ., then we set

Gy ={g et g(nmn)=g(n)g(rn), Yr,m € Hi}.

Let R+ = {rg . <{:> — <(Z>, rg = (ld®g)A, 8 & G+} Then R+
is a group for the composition law. Moreover, one has for
f,g & G+.'

I'fl'g = Ffog, fog = (f@g)A+.




Hopf Algebras

The KPZ equation and its generalisation

The KPZ equation is given for (t,x) € Ry x R by :
Oru = Au+ (Oxu)? + ¢

where £ is a space-time white noise.

The generalized KPZ equation is given by :

Oru = Au+ f(u) (0xu)? + k(u) Oyu + h(u) + g(u) €.

@ We obtain KPZfor f =g=1and k=h=0.

o Contains the solution of the stochastic heat equation and
invariant under composition with C°°(R)-functions.



Generalised KPZ

We use the following coding: 0 = =, % = Z(Z)= and & = 7;(Z)2.

Homogeneity Symbol(s)

—f—2/<a X, QP

—%—35 ap L, N, N, P

—5— kK ® , ]

45 EIR VI QUL A LV
LAY, @, Y, e, VK
Lo, &, N, Y, Vpo

wy VIR VR T AV SR ¢

0 1




Hopf Algebras

EMES

For % the only rooted subtrees wich give positive branches are

@%%@
red =)o+ g(Q)e+g() % + (W)L + (1)<
For <2, we consider the set {o, %, <, a0, <p)
ree = () o+ (5() +8(+2)) S+ (V) L+ (3 +g(1) Lo



Hopf Algebras

Definition of the model (M, Ik ,)

The map I is multiplicative and given by

(M)(y)=1,  (N=)y)=4&y), (OX)(y) =y,
(NZer)(y) :/DkK(y )M (2)dz.

The map Iy is multiplicative and given by

(M) y)=1, (M) =<&y), X)) =y—x
(LIr)y) = [ D*K(y — 2)(Mur)(2)z
|Zk(7)1s _
€ T )/DkMK(—z)(I_IXT)(z)dz.

=0



Hopf Algebras

Definition of the model (M, Ik ,)

The map My is given by My = (M ® £)A =My, where
(—X)E k4-¢
ta)=- Y S [0 K- ).
s<[1Zu(T)ls]

Then T, = (Mg,) 'l = [(ry-10f, = oy, In the case of smooth
functions, we have a pseudo-antipode description:

fe = (MAL-)(x)
where Ay : H, — H is defined by
A = 0" v A)A
WAGEESY o (Zktm @ Ay)AT.

m




Hopf Algebras

Negative Renormalisation

Definition

Let §_ C § be the set of all labelled forests F* = ) or

Fl'=(Ty1- To--- Tk)y such that T; ¢ ¥ and |(T;)¢|s < O for all
i=1,... k. The set §_ is stable under the product inherited from
§ and therefore (F_) is an algebra.




Hopf Algebras

Negative Renormalisation

Let MN_ : (§) — (F_) be the canonical projection onto (F_). Then
we define the following maps

The algebra (§_) endowed with the product (¢, $) — ¢ - ¢ and the
coproduct ™ is a Hopf algebra. Moreover A turns () into a left
comodule over (F_).




Hopf Algebras

Renormalisation Group

We define H_ as (§_). If H* denotes the dual of H_, then we set

G_ = {f e H €(¢1 (;52) = €(¢1)£(¢2), V¢1, qf)z S 'H,}.

Let R = {My;: () = (T), My = ({®id)A, ¢ G_}. Then R_
is a group for the composition law. Moreover, one has for
f,geG_:

M¢Mg = My, fog=(g®f)A™.




Hopf Algebras

EMES

For % the only subtrees which are non zero for £ in A(T) are:
1,42, % and % Therefore, we obtain

Mz%p_z )&+ 0(3) €+ (3
+ (%) S+ 0(% )&w@%)
= &+ L(a0) L+ 0(3) <+ 6().



Hopf Algebras

Recursivity

One can define the map £ using a pseudo-antipode as for the
positive renormalisation. The map £ is given by:

=E(NA_.)
where A_ : §_ — § is defined by

AT == Y Y <> - (Nl Teatea)

AcU(T\{{T}} cana

J n nA,nA—HreA
R Te+eA



Hopf Algebras

Link between the two renormalisations

On A=1{51,5,,5} € A(T), we compute:

\ /. yn U3 lg Ly
] [ ]
Ny U5 le /la ls Lo
® T+ _ d o
S, ps, Ryl = 4
PS3 PSy PSy PS3

Finally, we obtain {S3} € A" (T) and {S1,S2} € A°(T). The set
2A°(T) as to be understood as elements of A(T) without rooted
subtree.



Hopf Algebras

A new map 6°

With 2°(T), we set with the usual notations the map
6°: (%) = () ® (T)

R DD D W LG AR S

AeA°(F) ea, ﬂA

Proposition

Let M: (B F) — (F), ¢ ¢ — ¢-p. Then

(M ®id)(id ® 6°)6T =&




Hopf Algebras

Recursive Formula

For all £ € G_, we have

M = Mg = (IN_ ®id)s°, R=R, = (N_®id)s".

Proposition
The map R commutes with R and one has the following recursive
definition:

MP1=1,  M°X=X, M°==%=

MerT = (M°T) (M°T), Mt = M°RT

M°Zi (1) = Ik (M)

With this recursive definition, we are able to give an expression for

the renormalised model (MY, TH)).



Hopf Algebras

Classifications of the examples

We can classify the examples according to the following properties
satisfied by the model:

@ Nice: for every symbol 7, MY 7 = N, M7. Examples: PAM in
R? and the KPZ equation.

@ Medium-nice: For every symbol 7, (MM7)(x) = (M, M7)(x).
Examples: stochastic quantisation, the generalised KPZ.



Hopf Algebras

The reason of not having N = M, M

We consider the labelled tree T = Z(7), there exist 7; such that
MZI(1) =Z(Mr)=1Z(r)+ > ;Z(7;) with |7i|s > |T|s. Then we
obtain

(M2(r))) =
Y
/ (K(yz) > v K(z)) (7))o

€]s <[1Z(7)ls]

The main difference between MY7 and M, M7 is that we can have
longer Taylor expansion because |7j|s > |7|s. With
7 = Z(Z(Z(Z)=)=), we obtain a counter-example to MM =M, M.



Extension of the structure

A new label d

For that purpose, we use the same formalism as for ¥ and we
define Ty by:

© We give the same meaning to the node-labels, the leaves and
the edge-labels as for .

@ We add a new node-label d : N — R which computes a new
homogeneity.

For a shape T, we denote by Te“’d such labelled tree. The new
homogeneity is computed as | T|ex = | T| + >, cpy d(u).



Extension of the structure

Extended the extraction-contraction operations

Let A e A(T),

@ we extend R&T by performing the same computation and the
new node-labels is d4 the restriction of d to A .

@ we do the same for Ri\T and for every A € A, we replace
d(pa) by [R}T]ex.

In the next example, we compute RjT for A= {51, 5}

51 Kz 53 Es 66 £7 68

Y’ Uy by £a U5 U3
°
PS;

PSa — ‘Sllex |52‘ex )
P P



Extension of the structure

The coproduct A

We extend the linear map A: (3) — (3) ® () by

AFnd Z Z < )RT FnA+7reA, ®R$ Fn ng,d4ng+meq

eteyq
AcU(F) 4, ?A

Proposition

One has: (A ®id)A = (id ® A)A.




Extension of the structure

Trees with negative labelled d

We denote by T" the set of labelled trees with d : Ny — R_. We
do the same for F".

Definition

We define the positive labelled trees X' as the same as for T, with
the new homogeneity | - |ex. We consider P, the operator which
sets the root label of d to 0:

P T = T, d=d—1,.d,

and the operator P_ which sets d to 0 :

P_ -,—n d __ Tn 0 __ Tn




Extension of the structure

Coproduct

Let My : (F") — (T7), N_: () — (F—) be the canonical
projection onto (%] > resp. <S ). Then we define the following
maps

A 5 (T @ (T, A=(deon, Pt
AT (F) = (T @ (T), AT =(NyPr@NyPy)s"

AFE) = F )o@,  A=N_-P.®id)s§"
N :F )= @F ) @), N =M_P_-oMN_P_)i.



Extension of the structure

Hopf Algebras

Theorem

The algebra (27 ) endowed with the product (7,7) — 77 and the
coproduct At is a Hopf algebra. Moreover A turns (T") into a
right comodule over (T" ).

| \

Theorem

The algebra (§_) endowed with the product (¢, $) — ¢ - ¢ and the
coproduct IX” is a Hopf algebra. Moreover A turns (F") into a left
comodule over (F_).

The group R_ is unchanged whereas the group R takes into
account the new label d.



EMES

For % the only subtrees which are non zero for £ in A(T) are:
1,42, % and % Therefore, we obtain

Mzi'@»zf(l)?z@;w(v)cfw(@«f)%
+ (%) &+ (%) &+ 1)
=G+ L) K+ (%) &+ 1),



Extension of the structure

New property

Let A° defined by

AT (FU) @ (T, A = (M_P_ ®id)s°.

One has the following identities:

MI3)(2)(4) (&° @A) A = (id @ A)A°
MEDAE)(A @ A°)A = (id ® A)A.

where M3 js defined by

M(13)(2)(4)(T1 & T2 & T3 ®T4) = (7’1 - T3 Q@ T2 ®7‘4).




Extension of the structure

Nice identity

Let T and ¢ € G_, then I'IQ/’Z =My M,, %’y,’f; = Yy M; and

nyere= - Z < > (n_R;T:ﬁW)

AeA(T)eAa, uA
('R‘L T nA,ﬂA-i-mA)

eteq

nMeTr — (E(NA_-) @ N® (NA;-)(x)) (id @ A)AT.
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