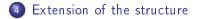
<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 1/47

Hopf Algebras on Labelled Forests: Application to Regularity Structures

Yvain Bruned University of Warwick (joint work with Martin Hairer and Lorenzo Zambotti)

February 2016, Potsdam



< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 2/47

Two renormalisations

The solution of a singular SPDE is described in the framework of Regularity Structures by a Taylor expansion with new monomials:

$$u(y) = u(x) + \sum_{i=1}^{N} a_i(x) (\Pi_x \tau_i)(y) + r(x, y)$$

where the τ_i belong to an abstract space T. We will use Hopf Algebras in order to build two groups:

- The structure group (Positive renormalisation) which defines Π_x and the map $\Gamma_{x,y}$ used for changing the point of our monomials.
- The renormalisation group (Negative renormalisation) which acts on the model $(\Pi_x, \Gamma_{x,y})$ for proving the convergence.

Introduction	Labelled Trees	Hopf Algebras	Extension of the structure
	21		
Hopf Algeb	ora <i>H</i>		

• a product $\mathcal{M}: \mathcal{H}\otimes \mathcal{H} \to \mathcal{H}$ satisfying:

 $\mathcal{M}\left(\mathcal{M}\otimes\mathrm{id}\right)=\mathcal{M}\left(\mathrm{id}\otimes\mathcal{M}\right),\quad\text{(Associativity)}$

ullet a unit $oldsymbol{1}\in\mathcal{H}$ satisfying:

$$\mathcal{M}(\mathbf{1}\otimes \tau) = \tau = \mathcal{M}(\tau \otimes \mathbf{1}), \forall \tau \in \mathcal{H}.$$

• a coproduct $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ satisfying:

 $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$, (Coassociativity)

• a counit $\mathbf{1}^\star:\mathcal{H} o\mathbb{R}$ satisfying:

 $\forall \tau \in \mathcal{H}, (\mathbf{1}^* \otimes \mathrm{id}) \, \Delta \tau = \tau = (\mathrm{id} \otimes \mathbf{1}^*) \, \Delta \tau.$

<ロト < □ > < □ > < 三 > < 三 > 三 の へ ○ 4/47

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ の Q ℃ 5/47

Hopf Algebra ${\cal H}$

• The coproduct and the counit are unital algebra homomorphisms:

$$\begin{split} \Delta \mathcal{M} &= \mathcal{M}_{\mathcal{H} \otimes \mathcal{H}} (\Delta \otimes \Delta) \,, \Delta \mathbf{1} = \mathbf{1} \otimes \mathbf{1} \,, \\ \mathbf{1}^{\star} \mathcal{M} &= \mathcal{M}_{\mathbb{R}} (\mathbf{1}^{\star} \otimes \mathbf{1}^{\star}) \,, \mathbf{1}^{\star} (\mathbf{1}) = \mathbf{1}. \end{split}$$

• An antipode map $\mathcal{A}: \mathcal{H} \to \mathcal{H}$ obeying:

$$\mathcal{M}(\mathcal{A} \otimes \mathrm{id}) \Delta = \mathbf{1} \mathbf{1}^{\star} = \mathcal{M}(\mathrm{id} \otimes \mathcal{A}) \Delta.$$

Comodule and Groups

A vector space $\overline{\mathcal{H}}$ is a right comodule over \mathcal{H} if there exists $\overline{\Delta} : \overline{\mathcal{H}} \to \overline{\mathcal{H}} \otimes \mathcal{H}$ such that:

$$\left(\bar{\Delta}\otimes\mathrm{id}\right)\bar{\Delta}=(\mathrm{id}\otimes\Delta)\bar{\Delta},\quad(\mathrm{id}\otimes\mathbf{1}^{\star})\bar{\Delta}=\mathrm{id}.$$

If \mathcal{H}^* denotes the dual of $\mathcal{H},$ then we set

$${\mathcal G}:=\{{oldsymbol g}\in {\mathcal H}^*: {oldsymbol g}(au_1 au_2)={oldsymbol g}(au_1){oldsymbol g}(au_2), \; orall au_1, au_2\in {\mathcal H}\}.$$

Theore<u>m</u>

Let $\mathcal{R} = \{\Gamma_g : \overline{\mathcal{H}} \to \overline{\mathcal{H}}, \ \Gamma_g = (\mathrm{id} \otimes g)\overline{\Delta}, \ g \in G\}$. Then \mathcal{R} is a group for the composition law. Moreover, one has for $f, g \in G$:

$$\Gamma_f \Gamma_g = \Gamma_{f \circ g}, \quad f \circ g = (f \otimes g) \Delta, \quad g^{-1} = g(\mathcal{A} \cdot).$$

The polynomial structure

Take \mathcal{H} the linear span of the abstract polynomials $\{X^k, k \in \mathbb{N}\}$. It is a Hopf algebra with $\mathbf{1} = X^0$ and:

 $\bullet\,$ The multiplicative coproduct Δ is given by

$$\Delta X = X \otimes \mathbf{1} + \mathbf{1} \otimes X, \quad \Delta X^n = \sum_{k=0}^n \binom{n}{k} X^k \otimes X^{n-k}$$

- The counit $\mathbf{1}^{\star}$ is defined by $\mathbf{1}^{\star}(X^k) = \mathbf{1}_{k=0}$.
- The antipode \mathcal{A} is multiplicative and given by $\mathcal{A}\mathbf{1} = \mathbf{1}$, $\mathcal{A}X = -X$.
- The structure group is isomorphic to \mathbb{R} and it is given by the translation: $\Gamma_g X^k = (X + g(X))^k$

$$\Gamma_{x,y}X^{k} = (\Gamma_{x})^{-1}\Gamma_{y}X^{k} = \Gamma_{-x}(X+y)^{k} = (X+y-x)^{k}.$$

The Wick product

We look at a very simple example of negative renormalisation: the powers of a standard gaussian r.v. ξ with zero mean and covariance $c \ge 0$.

We consider the abstract set $\mathcal{T} = \{\Xi^n : n \in \mathbb{N}\}$. Given the natural definition

$$\Pi \Xi^n = \xi^n,$$

we want to find M such that the renormalised *n*-th power of ξ is the Wick product:

$$\Pi^M \Xi^n = \xi^{\diamond n} = H_n(\xi, c)$$

where H_n are generalised Hermite polynomials. For that we consider the set $\mathcal{F} = \{\Xi^{n_1} \cdot \ldots \cdot \Xi^{n_k}, n_1, \ldots, n_k \in \mathbb{N}\}$ where the product \cdot is associative and commutative with neutral $\mathbf{1} = \Xi^0$.

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Renormalisation map M

We define the following coproduct $\hat{\Delta}$ by:

$$\hat{\Delta}\mathbf{1} = \mathbf{1} \otimes \mathbf{1}, \quad \hat{\Delta}\Xi^{n} = \sum_{\substack{n_{1}+\dots+n_{k}=n}} \frac{n!}{n_{1}!\cdots n_{k}!} \Xi^{n_{1}} \cdot \dots \cdot \Xi^{n_{k-1}} \otimes \Xi^{n_{k}}$$
$$\hat{\Delta}(\Xi^{n} \cdot \Xi^{m}) = (\hat{\Delta}\Xi^{n}) \cdot (\hat{\Delta}\Xi^{m})$$

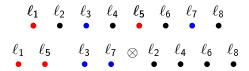
with the convention that for k = 1, one has $\Xi^n \otimes \mathbf{1} + \mathbf{1} \otimes \Xi^n$. We consider the Hopf algebra \mathcal{H} the linear span of \mathcal{F} . One way of defining M is $M = M_\ell$ where

$$M_{\ell} = (\ell \otimes id)\hat{\Delta}, \quad \ell(\Xi^n) = -c\mathbb{1}_{(n=2)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで 9/47

Example

We compute one term of $\hat{\Delta}\Xi^8$ associated to $A = \{\{\ell_1, \ell_5\}, \{\ell_3, \ell_7\}\}$:



< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ○ ○ 10/47

Rooted Trees

We define a framework in order to treat at the same time the two renormalisations positive and negative.

A rooted tree T is a finite tree (a finite connected graph without simple cycles) with a distinguished vertex, $\rho = \rho_T$, called *the root*, and a function $\mathfrak{l}: L_T \sqcup E_T \to \mathfrak{L}$, where

- edges of T are denoted by $E = E_T \subset N \times N$ and nodes by $N = N_T$
- 2 leaves, denoted by $L = L_T$. Interior nodes, i.e. nodes which are not leaves, are denotes by $\mathring{N} = N \setminus L$.
- **③** We denote by **1** the (unique) labelled tree with $L = \emptyset$.
- ${f O}$ ${f \mathfrak L}$ is a fixed non-empty set of types

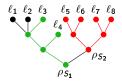
Admissible Trees

Definition

Given a rooted tree T and a rooted subtree $S \subseteq T$, we say that S is *admissible in* T if

 $\bullet L_S \subseteq L_T$

② either $\rho_S = \rho_T$, or there exists at least one leaf $\ell \in L_T \setminus L_S$ with $\rho_S \leq \ell$.



<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 12/47

Forests

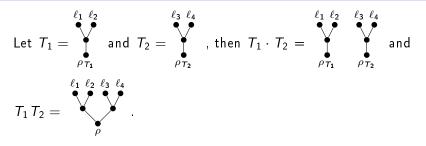
Definition

A forest F is a set of rooted trees denoted equivalently either by $\{T_1, \ldots, T_k\}$ or by $T_1 \cdot T_2 \cdots T_k$, with the empty set denoted by \emptyset .

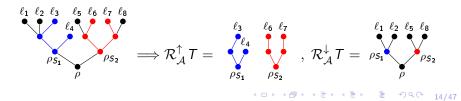
Definition

Given a forest $F = T_1 \cdot T_2 \cdots T_k$, we denote by $\mathfrak{A}(F)$ the set of all $\mathcal{A} = S_1 \cdot S_2 \cdots S_n$ such that any two elements of \mathcal{A} are disjoint. Moreover for every S_i , there exists T_j such that S_i is an admissible tree in T_j .

Operations on forests



In the next example, we compute the operations of extraction-contraction for $\mathcal{A} = \{S_1, S_2\} \in \mathfrak{A}(\mathcal{T})$:



Labelled trees ${\mathfrak T}$ and forests ${\mathfrak F}$

Definition

Every $T^n_{\mathfrak{e}} \in \mathfrak{T}$ is described with a triple $(T, \mathfrak{e}, \mathfrak{n})$ where T is a rooted tree endowed with

- an edge-labelling $\mathfrak{e} \colon E_T \to \mathbb{N}^d$
- a node-labelling $\mathfrak{n} \colon \mathring{N}_{\mathcal{T}} \to \mathbb{N}^{d}$.

We denote by \mathfrak{F} the set of labelled forests and denote a triple $(F, \mathfrak{e}, \mathfrak{n})$ by $F_{\mathfrak{e}}^{\mathfrak{n}} \in \mathfrak{F}$.

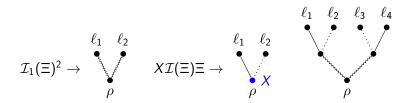
Definition

We write $\langle \mathfrak{T} \rangle$ for the linear span of $\mathfrak{T}.$ We denote $\langle \mathfrak{F} \rangle$ as the free vector space generated by \mathfrak{F} equipped with the product $\cdot.$

Link with the symbols

Let $T^{\mathfrak{n}}_{\mathfrak{e}} \in \mathfrak{T}$,

- To $u \in L_T$, we associate a "noise", $\Xi_{\mathfrak{l}(u)}$.
- To e ∈ E_T, we associate an abstract integrator \$\mathcal{I}_{\varepsilon(e)}^{\mathbf{l}(e)}(\cdot)\$.
 To u ∈ N_T, we associate a monomial \$X^{\varepsilon(u)}\$.



< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · つへで 16/47

Operations on the labels

- The product in ℑ is given by (Tⁿ_e, T̂^î_t) → T̄^π_ē, T̄ := T T̂ where the labels ē and n̄ are obtained by restriction except for the root, n̄(ρ_{T̄}) := n(ρ_T) + n̂(ρ_{T̄}).
- The product in \mathfrak{F} is given by $(F_{\mathfrak{e}}^{\mathfrak{n}}, \hat{F}_{\mathfrak{e}}^{\mathfrak{n}}) \mapsto \overline{F}_{\mathfrak{e}}^{\mathfrak{n}}$, where $\overline{F} := F \cdot \hat{F}$, and labels are obtained by restriction on F and \hat{F} .
- The forest $\mathcal{R}_{\mathcal{A}}^{\uparrow} F_{e}^{n}$ inherits edge- and node-labels from F_{e}^{n} by simple restriction.
- The forest $\mathcal{R}_{\mathcal{A}}^{\downarrow} F_{\mathfrak{e}}^{\mathfrak{n}}$ inherits the edge-labels from $F_{\mathfrak{e}}^{\mathfrak{n}}$ by simple restriction, while the node-labels are the sums of the labels over equivalence classes:

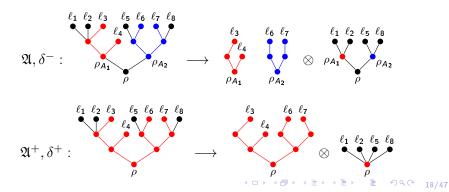
$$\mathfrak{n}([x]) \stackrel{\mathsf{def}}{=} \sum_{y: y \sim_{\mathcal{A}} x} \mathfrak{n}(y).$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ・ ● ● ● ● 17/47

Computation with $ar{\Delta}$

Let $\bar{\mathfrak{A}} \subset \mathfrak{A}$, we define an infinite triangular linear map $\bar{\Delta} \colon \langle \mathfrak{F} \rangle \to \langle \mathfrak{F} \rangle \otimes \langle \mathfrak{F} \rangle$ by

$$\bar{\Delta}F^{\mathfrak{n}}_{\mathfrak{e}} = \sum_{\mathcal{A}\in\bar{\mathfrak{A}}(F)}\sum_{\mathfrak{n}_{\mathcal{A}},\mathfrak{e}_{\mathcal{A}}}\frac{1}{\mathfrak{e}_{\mathcal{A}}!}\binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}}\mathcal{R}^{\uparrow}_{\mathcal{A}}F^{\mathfrak{n}_{\mathcal{A}}+\pi\mathfrak{e}_{\mathcal{A}}}_{\mathfrak{e}}\otimes\mathcal{R}^{\downarrow}_{\mathcal{A}}F^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}}}_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}$$



Coassociativity

Theorem

If $\bar{\mathfrak{A}}$ satisfies certain properties then the identity

$$(\mathrm{id}\otimes\bar{\Delta})\bar{\Delta}F^{\mathfrak{n}}_{\mathfrak{e}}=(\bar{\Delta}\otimes\mathrm{id})\bar{\Delta}F^{\mathfrak{n}}_{\mathfrak{e}}\ ,$$

holds for every $F_{\mathfrak{e}}^{\mathfrak{n}} \in \mathfrak{F}$. Moreover $\overline{\Delta}$ is multiplicative, i.e. for all $F_1, F_2 \in \mathfrak{F}$ $\overline{\Delta}(F_1 \cdot F_2) = (\overline{\Delta}F_1) \cdot (\overline{\Delta}F_2).$

Finally $\overline{\Delta} \colon \langle \mathfrak{T} \rangle \to \mathfrak{F} \otimes \langle \mathfrak{T} \rangle$, where $\langle \mathfrak{T} \rangle$ is the linear span of \mathfrak{T} .

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E のQ 0 19/47

Introduction	Labelled Trees	Hopf Algebras	Extension of the structure

Homogeneity

For a labelled tree $\mathcal{T}^{\mathfrak{n}}_{\mathfrak{e}} \in \mathfrak{T}$, we define its homogeneity by

$$|T^{\mathfrak{n}}_{\mathfrak{e}}|_{\mathfrak{s}} = \sum_{u \in L_{\mathcal{T}} \sqcup E_{\mathcal{T}}} |\mathfrak{l}(u)|_{\mathfrak{s}} + \sum_{x \in \mathring{N}_{\mathcal{T}}} |\mathfrak{n}(x)|_{\mathfrak{s}} - \sum_{e \in E_{\mathcal{T}}} |\mathfrak{e}(e)|_{\mathfrak{s}}.$$

To a symbol τ we associate a real number $|\tau|$ called its homogeneity: $|\Xi_{\alpha}|_{\mathfrak{s}} = |\alpha|_{\mathfrak{s}}, |X|_{\mathfrak{s}} = 1, |\mathbf{1}|_{\mathfrak{s}} = 0$

$$|\tau_1...\tau_n|_{\mathfrak{s}} = |\tau_1|_{\mathfrak{s}} + ... + |\tau_n|_{\mathfrak{s}}, \quad \mathcal{I}_k^\beta(\tau) = |\tau|_{\mathfrak{s}} + |\beta|_{\mathfrak{s}} - |k|_{\mathfrak{s}}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Positive Renormalisation

Definition

A rooted tree $T \in \mathfrak{T}$ is said to be *elementary* if it either consists only of the root or has only one edge incident to the root. Let $\hat{\mathfrak{T}}$ be the corresponding set of labelled trees.

Definition

Let $\mathfrak{T}^0_+ \subset \hat{\mathfrak{T}}$ be the set of elementary labelled trees with positive homogeneity and zero label at the root. Then \mathfrak{T}_+ is the set of labelled trees $T^n_{\mathfrak{e}}$ such that $T^{\hat{\mathfrak{n}}}_{\mathfrak{e}}$ is a product of trees in \mathfrak{T}^0_+ where $\hat{\mathfrak{n}}(x) := \mathfrak{n}(x) \mathbf{1}(x \neq \rho_T)$.

Positive Renormalisation

Let $\Pi_+:\mathfrak{T}\to\mathfrak{T}_+$ the multiplicative projection on trees with positive homogeneity. We define :

$$egin{aligned} \Delta &: \langle \mathfrak{T}
angle o \langle \mathfrak{T}
angle \otimes \langle \mathfrak{T}_+
angle, & \Delta = (\mathrm{id} \otimes \Pi_+) \delta^+ \ \Delta^+ &: \langle \mathfrak{T}_+
angle o \langle \mathfrak{T}_+
angle \otimes \langle \mathfrak{T}_+
angle, & \Delta^+ = (\Pi_+ \otimes \Pi_+) \delta^+ \end{aligned}$$

Theorem

The algebra $\langle \mathfrak{T}_+ \rangle$ endowed with the product $(\tau, \overline{\tau}) \mapsto \tau \overline{\tau}$ and the coproduct Δ^+ is a Hopf algebra. Moreover Δ turns $\langle \mathfrak{T} \rangle$ into a right comodule over $\langle \mathfrak{T}_+ \rangle$.

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ C 23/47

Positive renormalisation Group : Structure Group

We define \mathcal{H}_+ as $\langle \mathfrak{T}_+ \rangle$. If \mathcal{H}_+^* denotes the dual of \mathcal{H}_+ , then we set

$$\mathcal{G}_+:=\{oldsymbol{g}\in\mathcal{H}^*_+:oldsymbol{g}(au_1 au_2)=oldsymbol{g}(au_1)oldsymbol{g}(au_2),\,\,orall\, au_1, au_2\in\mathcal{H}_+\}.$$

Theorem

Let $\mathcal{R}_{+} = \{\Gamma_{g} : \langle \mathfrak{T} \rangle \to \langle \mathfrak{T} \rangle, \ \Gamma_{g} = (\mathrm{id} \otimes g)\Delta, \ g \in G_{+}\}.$ Then \mathcal{R}_{+} is a group for the composition law. Moreover, one has for $f, g \in G_{+}:$ $\Gamma_{f}\Gamma_{g} = \Gamma_{f \circ g}, \quad f \circ g = (f \otimes g)\Delta^{+}.$

The KPZ equation and its generalisation

The KPZ equation is given for $(t,x)\in\mathbb{R}_+ imes\mathbb{R}$ by :

$$\partial_t u = \Delta u + (\partial_x u)^2 + \xi$$

where ξ is a space-time white noise.

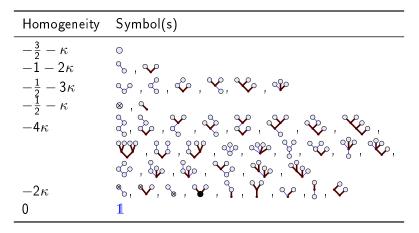
The generalized KPZ equation is given by :

$$\partial_t u = \Delta u + f(u) (\partial_x u)^2 + k(u) \partial_x u + h(u) + g(u) \xi.$$

- We obtain KPZ for $f \equiv g \equiv 1$ and $k \equiv h \equiv 0$.
- Contains the solution of the stochastic heat equation and invariant under composition with C[∞](ℝ)-functions.

Generalised KPZ

We use the following coding: $\circ = \Xi$, $\circ_{\circ} = \mathcal{I}(\Xi)\Xi$ and $\circ_{\mathcal{V}} = \mathcal{I}_1(\Xi)^2$.



Introduction	Labelled Trees	Hopf Algebras	Extension of the structure
- Evennelee			
Examples			

For $\overset{\circ}{\circ}_{o}$, the only rooted subtrees wich give positive branches are $\{\circ, \circ_{o}, \circ_{o}^{\circ}, \circ_{o}^{\circ}, \circ_{o}^{\circ}\}$

$$\Gamma_{g} \overset{\circ}{\underset{\circ}{\circ}} = g(\overset{\circ}{\underset{\circ}{\circ}}) \circ + g(\overset{\circ}{\underset{\circ}{\circ}}) \otimes + g(\overset{\circ}{\underset{\circ}{\circ}}) \overset{\circ}{\underset{\circ}{\circ}} + g(\overset{\circ}{\underset{\circ}{\circ}}) \overset{\circ}{\underset{\circ}{\circ}} + g(1) \overset{\circ}{\underset{\circ}{\circ}}.$$

For a_0^{o} , we consider the set $\{\circ, \circ_0, \circ_0^{o}, \circ_0^{o}, \circ_0^{o}, \circ_0^{o}\}$

$$\mathsf{\Gamma}_{g} \circ^{\diamond}_{\mathsf{O}} = g(\circ^{\diamond}_{\mathsf{O}}) \circ + \left(g(\circ^{\diamond}_{\mathsf{O}}) + g(\circ_{\mathsf{O}})\right) \circ_{\diamond} + g(\circ_{\mathsf{O}}) \circ^{\diamond}_{\diamond} + g(\circ_{\mathsf{O}}) \circ^{\diamond}_{\diamond} + g(\circ_{\mathsf{O}}) \circ^{\diamond}_{\diamond} + g(1) \circ^{\diamond}_{\mathsf{O}}.$$

Definition of the model $(\Pi_x, \Gamma_{x,y})$

The map Π is multiplicative and given by

$$\begin{cases} (\Pi \mathbf{1})(y) = 1, & (\Pi \Xi)(y) = \xi(y), & (\Pi X)(y) = y, \\ (\Pi \mathcal{I}_k \tau)(y) = \int D^k \mathcal{K}(y - z)(\Pi \tau)(z) dz. \end{cases}$$

The map Π_x is multiplicative and given by

$$\begin{aligned} (\Pi_x \mathbf{1})(y) &= 1, \qquad (\Pi_x \Xi)(y) = \xi(y), \qquad (\Pi_x X)(y) = y - x, \\ (\Pi_x \mathcal{I}_k \tau)(y) &= \int D^k \mathcal{K}(y - z)(\Pi_x \tau)(z) dz \\ &- \sum_{\ell=0}^{|\mathcal{I}_k(\tau)|_s} \frac{(y - x)^\ell}{\ell!} \int D^{k+\ell} \mathcal{K}(-z)(\Pi_x \tau)(z) dz. \end{aligned}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 < 0 27/47

Definition of the model $(\Pi_x, \Gamma_{x,y})$

The map Π_x is given by $\Pi_x = (\Pi \otimes f_x)\Delta = \Pi\Gamma_{f_x}$ where

$$f_x(\mathcal{J}_k(\tau)) = -\sum_{|\ell|_s < \lceil |\mathcal{I}_k(\tau)|_s \rceil} \frac{(-x)^{\ell}}{\ell!} \int D^{k+\ell} \mathcal{K}(x-y) \Pi_x(\tau)(y) dy.$$

Then $\Gamma_{x,y} = (\Gamma_{f_x})^{-1} \Gamma_{f_y} = \Gamma_{(f_x)^{-1} \circ f_y} = \Gamma_{\gamma_{x,y}}$. In the case of smooth functions, we have a pseudo-antipode description:

$$f_x = (\Pi \mathcal{A}_+ \cdot)(x)$$

where $\mathcal{A}_+:\mathcal{H}_+\to\mathcal{H}$ is defined by

$$\mathcal{A}_+\mathcal{J}_k(\tau) = -\sum_m \frac{(-X)^m}{m!} \mathcal{M}(\mathcal{I}_{k+m} \otimes \mathcal{A}_+) \Delta \tau.$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 28/47

Negative Renormalisation

Definition

Let $\mathfrak{F}_{-} \subset \mathfrak{F}$ be the set of all labelled forests $F_{\mathfrak{e}}^{\mathfrak{n}} = \emptyset$ or $F_{\mathfrak{e}}^{\mathfrak{n}} = (T_1 \cdot T_2 \cdots T_k)_{\mathfrak{e}}^{\mathfrak{n}}$ such that $T_i \notin \hat{\mathfrak{T}}$ and $|(T_i)_{\mathfrak{e}}^{\mathfrak{n}}|_{\mathfrak{s}} < 0$ for all $i = 1, \ldots, k$. The set \mathfrak{F}_{-} is stable under the product inherited from \mathfrak{F} and therefore $\langle \mathfrak{F}_{-} \rangle$ is an algebra.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 29/47

Negative Renormalisation

Let $\Pi_-:\langle \mathfrak{F}\rangle\mapsto \langle \mathfrak{F}_-\rangle$ be the canonical projection onto $\langle \mathfrak{F}_-\rangle$. Then we define the following maps

$$\hat{\Delta}: \langle \mathfrak{F} \rangle \to \langle \mathfrak{F}_{-} \rangle \otimes \langle \mathfrak{F} \rangle, \qquad \hat{\Delta} = (\Pi_{-} \otimes \mathrm{id})\delta^{-}$$
 $\Delta^{-}: \langle \mathfrak{F}_{-} \rangle \to \langle \mathfrak{F}_{-} \rangle \otimes \langle \mathfrak{F}_{-} \rangle, \qquad \Delta^{-} = (\Pi_{-} \otimes \Pi_{-})\delta^{-}.$

Theorem

The algebra $\langle \mathfrak{F}_{-} \rangle$ endowed with the product $(\phi, \overline{\phi}) \mapsto \phi \cdot \overline{\phi}$ and the coproduct Δ^{-} is a Hopf algebra. Moreover $\hat{\Delta}$ turns $\langle \mathfrak{F} \rangle$ into a left comodule over $\langle \mathfrak{F}_{-} \rangle$.

Renormalisation Group

We define \mathcal{H}_{-} as $\langle \mathfrak{F}_{-} \rangle$. If \mathcal{H}_{-}^{*} denotes the dual of \mathcal{H}_{-} , then we set

 $\mathcal{G}_{-} := \{\ell \in \mathcal{H}_{-}^{*} : \ell(\phi_{1} \cdot \phi_{2}) = \ell(\phi_{1})\ell(\phi_{2}), \forall \phi_{1}, \phi_{2} \in \mathcal{H}_{-}\}.$

Theorem

Let $\mathcal{R}_{-} = \{M_{\ell} : \langle \mathfrak{T} \rangle \to \langle \mathfrak{T} \rangle, \ M_{\ell} = (\ell \otimes \mathrm{id}) \hat{\Delta}, \ \ell \in G_{-}\}.$ Then \mathcal{R}_{-} is a group for the composition law. Moreover, one has for $f, g \in G_{-}$:

$$M_f M_g = M_{f \circ g}, \quad f \circ g = (g \otimes f) \Delta^-.$$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · の Q @ 31/47

Examples

For $\overset{\circ}{\diamond}$, the only subtrees which are non zero for ℓ in $\mathfrak{A}(\mathcal{T})$ are: 1, \diamond , \diamond and $\overset{\circ}{\diamond}$. Therefore, we obtain

$$egin{aligned} &\mathcal{M}_\ell \overset{\circ}{\diamondsuit} = \ell(\mathbf{1})\overset{\circ}{\diamondsuit} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\curlyvee} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\curlyvee} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\diamondsuit} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\diamondsuit} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\diamondsuit} + \ell (\overset{\circ}{\diamondsuit}) &= \overset{\circ}{\diamondsuit} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\checkmark} + \ell (\overset{\circ}{\diamondsuit})\overset{\circ}{\diamondsuit} + \ell (\overset{\circ}{\diamondsuit}). \end{aligned}$$

One can define the map ℓ using a pseudo-antipode as for the positive renormalisation. The map ℓ is given by:

 $\ell = \mathbb{E}(\Pi \mathcal{A}_{-} \cdot)$

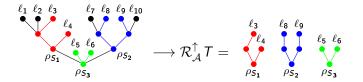
where $\mathcal{A}_-:\mathfrak{F}_- o\mathfrak{F}$ is defined by

$$\begin{aligned} \mathcal{A}_{-}(\mathcal{T}^{\mathfrak{n}}_{\mathfrak{e}}) &= -\sum_{\mathcal{A}\in\mathfrak{A}(\mathcal{T})\setminus\{\{\mathcal{T}\}\}}\sum_{\mathfrak{e}_{\mathcal{A}},\mathfrak{n}_{\mathcal{A}}}\frac{1}{\mathfrak{e}_{\mathcal{A}}!}\binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}}\mathcal{A}_{-}\left(\Pi_{-}\mathcal{R}^{\uparrow}_{\mathcal{A}}\mathcal{T}^{\mathfrak{n}_{\mathcal{A}}+\pi\mathfrak{e}_{\mathcal{A}}}_{\mathfrak{e}}\right) \\ \mathcal{R}^{\downarrow}_{\mathcal{A}}\mathcal{T}^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}},\mathfrak{n}_{\mathcal{A}}+\pi\mathfrak{e}_{\mathcal{A}}}_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}. \end{aligned}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 33/47

Link between the two renormalisations

On $\mathcal{A} = \{S_1, S_2, S_3\} \in \mathfrak{A}(\mathcal{T})$, we compute:



Finally, we obtain $\{S_3\} \in \mathfrak{A}^+(T)$ and $\{S_1, S_2\} \in \mathfrak{A}^\circ(T)$. The set $\mathfrak{A}^\circ(T)$ as to be understood as elements of $\mathfrak{A}(T)$ without rooted subtree.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ⑦ Q @ 34/47

A new map δ°

With $\mathfrak{A}^{\circ}(\mathcal{T})$, we set with the usual notations the map $\delta^{\circ}: \langle \mathfrak{T} \rangle \mapsto \langle \mathfrak{F} \rangle \otimes \langle \mathfrak{T} \rangle$

$$\delta^{\circ} F^{\mathfrak{n}}_{\mathfrak{e}} := \sum_{\mathcal{A} \in \mathfrak{A}^{\circ}(F)} \sum_{\mathfrak{e}_{\mathcal{A}}, \mathfrak{n}_{\mathcal{A}}} \frac{1}{\mathfrak{e}_{\mathcal{A}}!} \binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}} \mathcal{R}^{\uparrow}_{\mathcal{A}} F^{\mathfrak{n}_{\mathcal{A}} + \pi \mathfrak{e}_{\mathcal{A}}}_{\mathfrak{e}} \otimes \mathcal{R}^{\downarrow}_{\mathcal{A}} F^{\mathfrak{n} - \mathfrak{n}_{\mathcal{A}}}_{\mathfrak{e} + \mathfrak{e}_{\mathcal{A}}},$$

Proposition

Let $\mathcal{M}: \langle \mathfrak{F} \rangle \otimes \langle \mathfrak{F} \rangle \mapsto \langle \mathfrak{F} \rangle$, $\phi \otimes \overline{\phi} \mapsto \phi \cdot \overline{\phi}$. Then

 $(\mathcal{M} \otimes \mathrm{id})(\mathrm{id} \otimes \delta^{\circ})\delta^{+} = \delta^{-}.$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 35/47

Recursive Formula

For all $\ell \in G_{-}$, we have

$$M^{\circ} = M^{\circ}_{\ell} = (\ell \Pi_{-} \otimes \mathrm{id}) \delta^{\circ}, \quad R = R_{\ell} = (\ell \Pi_{-} \otimes \mathrm{id}) \delta^{+}.$$

Proposition

The map R commutes with \mathcal{R}_+ and one has the following recursive definition:

$$\begin{cases} M^{\circ}\mathbf{1} = \mathbf{1}, & M^{\circ}X = X, & M^{\circ}\Xi = \Xi\\ M^{\circ}\tau\bar{\tau} = (M^{\circ}\tau)(M^{\circ}\bar{\tau}), & M\tau = M^{\circ}R\tau\\ M^{\circ}\mathcal{I}_{k}(\tau) = \mathcal{I}_{k}(M\tau) \end{cases}$$

With this recursive definition, we are able to give an expression for the renormalised model $(\prod_{x}^{M}, \Gamma_{x,y}^{M})$.

<□ > < @ > < E > < E > E の Q @ 37/47

Classifications of the examples

We can classify the examples according to the following properties satisfied by the model:

- Nice: for every symbol τ , $\Pi_x^M \tau = \Pi_x M \tau$. Examples: PAM in \mathbb{R}^2 and the KPZ equation.
- Medium-nice: For every symbol τ , $(\Pi_x^M \tau)(x) = (\Pi_x M \tau)(x)$. Examples: stochastic quantisation, the generalised KPZ.

The reason of not having $\Pi_x^M = \Pi_x M$

We consider the labelled tree $\bar{\tau} = \mathcal{I}(\tau)$, there exist τ_i such that $M\mathcal{I}(\tau) = \mathcal{I}(M\tau) = \mathcal{I}(\tau) + \sum_i \mathcal{I}(\tau_i)$ with $|\tau_i|_{\mathfrak{s}} > |\tau|_{\mathfrak{s}}$. Then we obtain

$$(\Pi_x^M \mathcal{I}(\tau))(y) = \int \left(\mathcal{K}(y-z) - \sum_{|\ell|_s < \lceil |\mathcal{I}(\tau)|_s \rceil} \frac{(y-x)^{\ell}}{\ell!} \mathcal{K}(-z) \right) (\Pi_x^M \tau)(z) dz.$$

The main difference between $\Pi_x^M \bar{\tau}$ and $\Pi_x M \bar{\tau}$ is that we can have longer Taylor expansion because $|\tau_i|_{\mathfrak{s}} > |\tau|_{\mathfrak{s}}$. With $\tau = \mathcal{I}(\mathcal{I}(\mathcal{I}(\Xi)\Xi)\Xi)$, we obtain a counter-example to $\Pi_x^M = \Pi_x M$.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 38/47

A new label d

For that purpose, we use the same formalism as for \mathfrak{T} and we define \mathfrak{T}_{ex} by:

- We give the same meaning to the node-labels, the leaves and the edge-labels as for S.
- ② We add a new node-label d : N → ℝ which computes a new homogeneity.

For a shape T, we denote by $T_{\mathfrak{e}}^{\mathfrak{n},d}$ such labelled tree. The new homogeneity is computed as $|T|_{ex} = |T| + \sum_{u \in N} d(u)$.

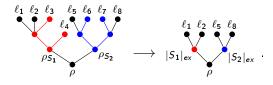
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extended the extraction-contraction operations

Let $\mathcal{A} \in \mathfrak{A}(T)$,

- we extend $\mathcal{R}_{\mathcal{A}}^{\uparrow}\mathcal{T}$ by performing the same computation and the new node-labels is $d_{\mathcal{A}}$ the restriction of d to \mathcal{A} .
- we do the same for $\mathcal{R}_{\mathcal{A}}^{\downarrow}T$ and for every $A \in \mathcal{A}$, we replace $d(\rho_A)$ by $|\mathcal{R}_{\mathcal{A}}^{\uparrow}T|_{ex}$.

In the next example, we compute $\mathcal{R}_{\mathcal{A}}^{\downarrow}\mathcal{T}$ for $\mathcal{A} = \{S_1, S_2\}$.



<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 · · ○ へ ○ · 40/47

The coproduct $ar{\Delta}$

We extend the linear map $\bar{\Delta} \colon \langle \mathfrak{F} \rangle \to \langle \mathfrak{F} \rangle \otimes \langle \mathfrak{F} \rangle$ by

$$\bar{\Delta}F_{\mathfrak{e}}^{\mathfrak{n},d} = \sum_{\mathcal{A}\in\bar{\mathfrak{A}}(F)}\sum_{\mathfrak{n}_{\mathcal{A}},\mathfrak{e}_{\mathcal{A}}}\frac{1}{\mathfrak{e}_{\mathcal{A}}!}\binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}}\mathcal{R}_{\mathcal{A}}^{\uparrow}F_{\mathfrak{e}}^{\mathfrak{n}_{\mathcal{A}}+\pi\mathfrak{e}_{\mathcal{A}},d}\otimes\mathcal{R}_{\mathcal{A}}^{\downarrow}F_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}},d+\mathfrak{n}_{\mathcal{A}}+\pi\mathfrak{e}_{\mathcal{A}}}$$

Proposition

One has: $(\bar{\Delta} \otimes \mathrm{id})\bar{\Delta} = (\mathrm{id} \otimes \bar{\Delta})\bar{\Delta}$.

Trees with negative labelled d

Definition

We denote by \mathfrak{T}^n the set of labelled trees with $d: N_T \to \mathbb{R}_-$. We do the same for \mathfrak{F}^n .

Definition

We define the positive labelled trees \mathfrak{T}_+^n as the same as for \mathfrak{T}_+ with the new homogeneity $|\cdot|_{ex}$. We consider \mathcal{P}_+ the operator which sets the root label of d to 0:

$$\mathcal{P}_+ T^{\mathfrak{n},d}_{\mathfrak{e}} = T^{\mathfrak{n},\overline{d}}_{\mathfrak{e}}, \quad \overline{d} = d - \mathbb{1}_{\rho_T} d,$$

and the operator \mathcal{P}_- which sets d to 0 :

$$\mathcal{P}_{-}T_{\mathfrak{e}}^{\mathfrak{n},d}=T_{\mathfrak{e}}^{\mathfrak{n},0}=T_{\mathfrak{e}}^{\mathfrak{n}}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q @ 42/47

Coproduct

Let $\Pi_+ : \langle \mathfrak{F}^n \rangle \mapsto \langle \mathfrak{T}^n_+ \rangle$, $\Pi_- : \langle \mathfrak{F} \rangle \mapsto \langle \mathfrak{F}_- \rangle$ be the canonical projection onto $\langle \mathfrak{T}^n_+ \rangle$, resp. $\langle \mathfrak{F}_- \rangle$. Then we define the following maps

$$\begin{split} \Delta &: \langle \mathfrak{T}^n \rangle \to \langle \mathfrak{T}^n \rangle \otimes \langle \mathfrak{T}^n_+ \rangle, \qquad \Delta = (\mathrm{id} \otimes \Pi_+ \mathcal{P}_+) \delta^+ \\ \Delta^+ &: \langle \mathfrak{T}^n_+ \rangle \to \langle \mathfrak{T}^n_+ \rangle \otimes \langle \mathfrak{T}^n_+ \rangle, \qquad \Delta^+ = (\Pi_+ \mathcal{P}_+ \otimes \Pi_+ \mathcal{P}_+) \delta^+ \\ \hat{\Delta} &: \langle \mathfrak{F}^n \rangle \to \langle \mathfrak{F}_- \rangle \otimes \langle \mathfrak{F}^n \rangle, \qquad \hat{\Delta} = (\Pi_- \mathcal{P}_- \otimes \mathrm{id}) \delta^- \\ \Delta^- &: \langle \mathfrak{F}_- \rangle \to \langle \mathfrak{F}_- \rangle \otimes \langle \mathfrak{F}_- \rangle, \qquad \Delta^- = (\Pi_- \mathcal{P}_- \otimes \Pi_- \mathcal{P}_-) \delta^-. \end{split}$$

◆□▶ ◆昼▶ ◆ 差▶ 差 ∽ Q ペ 43/47

Hopf Algebras

Theorem

The algebra $\langle \mathfrak{T}_{+}^{n} \rangle$ endowed with the product $(\tau, \overline{\tau}) \mapsto \tau \overline{\tau}$ and the coproduct Δ^{+} is a Hopf algebra. Moreover Δ turns $\langle \mathfrak{T}^{n} \rangle$ into a right comodule over $\langle \mathfrak{T}_{+}^{n} \rangle$.

Theorem

The algebra $\langle \mathfrak{F}_{-} \rangle$ endowed with the product $(\phi, \overline{\phi}) \mapsto \phi \cdot \overline{\phi}$ and the coproduct Δ^{-} is a Hopf algebra. Moreover $\hat{\Delta}$ turns $\langle \mathfrak{F}^{n} \rangle$ into a left comodule over $\langle \mathfrak{F}_{-} \rangle$.

The group \mathcal{R}_- is unchanged whereas the group \mathcal{R}_+ takes into account the new label d.

▲□▶ ▲ 클 ▶ ▲ 클 ▶ 클 ∽ 역 ペ 45/47

Examples

For $\overset{\circ}{\diamond}$, the only subtrees which are non zero for ℓ in $\mathfrak{A}(\mathcal{T})$ are: 1, \diamond , \diamond and $\overset{\circ}{\diamond}$. Therefore, we obtain

$$\begin{split} \mathcal{M}_{\ell} \overset{\diamond}{\mathfrak{O}} &= \ell(\mathbf{1}) \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \overset{\diamond}{\mathfrak{O}} \\ &+ \ell(\boldsymbol{\diamond}) \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \\ &= \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \overset{\diamond}{\mathfrak{O}} + \ell(\boldsymbol{\diamond}) \end{split}$$

New property

Let $\Delta^{\!\circ}$ defined by

$$\Delta^{\circ}: \langle \mathfrak{T}^n \rangle \mapsto \langle \mathfrak{F}_- \rangle \otimes \langle \mathfrak{T}^n \rangle, \qquad \Delta^{\circ} = (\Pi_- \mathcal{P}_- \otimes \mathrm{id}) \delta^{\circ}.$$

Proposition

One has the following identities:

$$\begin{split} \mathcal{M}^{(13)(2)(4)} \left(\Delta^{\circ} \otimes \Delta^{\circ} \right) \Delta &= (\mathrm{id} \otimes \Delta) \Delta^{\circ} \\ \mathcal{M}^{(13)(2)(4)} (\hat{\Delta} \otimes \Delta^{\circ}) \Delta &= (\mathrm{id} \otimes \Delta) \hat{\Delta}. \end{split}$$

where $\mathcal{M}^{(13)(2)(4)}$ is defined by

$$\mathcal{M}^{(13)(2)(4)}(au_1\otimes au_2\otimes au_3\otimes au_4)=(au_1\cdot au_3\otimes au_2\otimes au_4).$$

Nice identity

Proposition

Let
$$T^{\mathfrak{n}}_{\mathfrak{e}}$$
 and $\ell \in G_{-}$, then $\Pi^{M_{\ell}}_{x} = \Pi_{x} M_{\ell}$, $\gamma^{M_{\ell}}_{x,y} = \gamma_{x,y} M^{\circ}_{\ell}$ and

$$\Pi_{x}^{M_{\ell}} T_{\mathfrak{e}}^{\mathfrak{n}} = \sum_{\mathcal{A} \in \mathfrak{A}(\mathcal{T})} \sum_{\mathfrak{e}_{\mathcal{A}}, \mathfrak{n}_{\mathcal{A}}} \frac{1}{\mathfrak{e}_{\mathcal{A}}!} \binom{\mathfrak{n}}{\mathfrak{n}_{\mathcal{A}}} \ell \left(\Pi_{-} \mathcal{R}_{\mathcal{A}}^{\uparrow} T_{\mathfrak{e}}^{\mathfrak{n}_{\mathcal{A}} + \pi \mathfrak{e}_{\mathcal{A}}} \right)$$
$$\Pi_{x} \left(\mathcal{R}_{\mathcal{A}}^{\downarrow} T_{\mathfrak{e}+\mathfrak{e}_{\mathcal{A}}}^{\mathfrak{n}-\mathfrak{n}_{\mathcal{A}}, \mathfrak{n}_{\mathcal{A}} + \pi \mathfrak{e}_{\mathcal{A}}} \right)$$

 $\Pi^{M_\ell}_x \mathcal{T}^\mathfrak{n}_\mathfrak{e} = \left(\mathbb{E}(\Pi \mathcal{A}_- \cdot) \otimes \Pi \otimes (\Pi \mathcal{A}_+ \cdot)(x)\right) (\mathrm{id} \otimes \Delta) \hat{\Delta} \mathcal{T}^\mathfrak{n}_\mathfrak{e}.$

<□▶ < @▶ < ≧▶ < ≧▶ ≧ り Q ^Q 47/47