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Two renormalisations

The solution of a singular SPDE is described in the framework of

Regularity Structures by a Taylor expansion with new monomials:

u(y) = u(x) +
N∑
i=1

ai (x) (Πxτi )(y) + r(x , y)

where the τi belong to an abstract space T . We will use Hopf

Algebras in order to build two groups:

The structure group (Positive renormalisation) which de�nes

Πx and the map Γx ,y used for changing the point of our

monomials.

The renormalisation group (Negative renormalisation) which

acts on the model (Πx , Γx ,y ) for proving the convergence.
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Hopf Algebra H

a productM : H⊗H → H satisfying:

M (M⊗ id) =M (id⊗M) , (Associativity)

a unit 1 ∈ H satisfying:

M(1⊗ τ) = τ =M(τ ⊗ 1) ,∀τ ∈ H.

a coproduct ∆ : H → H⊗H satisfying:

(∆⊗ id)∆ = (id⊗∆)∆, (Coassociativity)

a counit 1? : H → R satisfying:

∀τ ∈ H , (1? ⊗ id) ∆τ = τ = (id⊗ 1?) ∆τ.
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Hopf Algebra H

The coproduct and the counit are unital algebra

homomorphisms:

∆M =MH⊗H(∆⊗∆) ,∆1 = 1⊗ 1 ,

1?M =MR(1? ⊗ 1?) , 1?(1) = 1.

An antipode map A : H → H obeying:

M(A⊗ id)∆ = 11? =M(id⊗A)∆.
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Comodule and Groups

A vector space H̄ is a right comodule over H if there exists

∆̄ : H̄ → H̄ ⊗H such that:(
∆̄⊗ id

)
∆̄ = (id⊗∆)∆̄, (id⊗ 1?)∆̄ = id.

If H∗ denotes the dual of H, then we set

G := {g ∈ H∗ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H}.

Theorem

Let R = {Γg : H̄ → H̄, Γg = (id⊗ g)∆̄, g ∈ G}. Then R is a

group for the composition law. Moreover, one has for f , g ∈ G:

Γf Γg = Γf ◦g , f ◦ g = (f ⊗ g)∆, g−1 = g(A·).
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The polynomial structure

Take H the linear span of the abstract polynomials {X k , k ∈ N}. It
is a Hopf algebra with 1 = X 0 and:

The multiplicative coproduct ∆ is given by

∆X = X ⊗ 1 + 1⊗ X , ∆X n =
n∑

k=0

(
n

k

)
X k ⊗ X n−k

The counit 1? is de�ned by 1?(X k) = 1k=0.

The antipode A is multiplicative and given by A1 = 1,
AX = −X .

The structure group is isomorphic to R and it is given by the

translation: ΓgX
k = (X + g(X ))k

Γx ,yX
k = (Γx)−1ΓyX

k = Γ−x(X + y)k = (X + y − x)k .
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The Wick product

We look at a very simple example of negative renormalisation: the

powers of a standard gaussian r.v. ξ with zero mean and covariance

c ≥ 0.

We consider the abstract set T = {Ξn : n ∈ N}. Given the natural

de�nition

Π Ξn = ξn,

we want to �nd M such that the renormalised n-th power of ξ is
the Wick product:

ΠMΞn = ξ�n = Hn(ξ, c)

where Hn are generalised Hermite polynomials. For that we

consider the set F = {Ξn1 · ... · Ξnk , n1, ..., nk ∈ N} where the
product · is associative and commutative with neutral 1 = Ξ0.
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Renormalisation map M

We de�ne the following coproduct ∆̂ by:

∆̂1 = 1⊗ 1, ∆̂Ξn =
∑

n1+···+nk=n

n!

n1! · · · nk !
Ξn1 · ... · Ξnk−1 ⊗ Ξnk

∆̂(Ξn · Ξm) = (∆̂Ξn) · (∆̂Ξm)

with the convention that for k = 1, one has Ξn ⊗ 1 + 1⊗ Ξn. We

consider the Hopf algebra H the linear span of F . One way of

de�ning M is M = M` where

M` = (`⊗ id)∆̂, `(Ξn) = −c1(n=2).
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Example

We compute one term of ∆̂Ξ8 associated to

A = {{`1, `5}, {`3, `7}}:

`4`2`1 `5 `6 `8`1 `5`3 `7

`3 `7`1 `5 ⊗ `4`2 `6 `8
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Rooted Trees

We de�ne a framework in order to treat at the same time the two

renormalisations positive and negative.

A rooted tree T is a �nite tree (a �nite connected graph without

simple cycles) with a distinguished vertex, ρ = ρT , called the root,

and a function l : LT t ET → L, where

1 edges of T are denoted by E = ET ⊂ N × N and nodes by

N = NT

2 leaves, denoted by L = LT . Interior nodes, i.e. nodes which

are not leaves, are denotes by N̊ = N \ L.
3 We denote by 1 the (unique) labelled tree with L = ∅.
4 L is a �xed non-empty set of types
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Admissible Trees

De�nition

Given a rooted tree T and a rooted subtree S ⊆ T , we say that S

is admissible in T if

1 LS ⊆ LT

2 either ρS = ρT , or there exists at least one leaf ` ∈ LT \ LS
with ρS ≤ `.

ρS1

`1 `3`2

`4

`5 `6 `7

ρS2

`8
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Forests

De�nition

A forest F is a set of rooted trees denoted equivalently either by

{T1, . . . ,Tk} or by T1 ·T2 · · ·Tk , with the empty set denoted by ∅.

De�nition

Given a forest F = T1 · T2 · · ·Tk , we denote by A(F ) the set of all

A = S1 · S2 · · · Sn such that any two elements of A are disjoint.

Moreover for every Si , there exists Tj such that Si is an admissible

tree in Tj .
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Operations on forests

Let T1 =
ρT1

`2`1

and T2 =
ρT2

`4`3

, then T1 · T2 =
ρT1

`2`1

ρT2

`4`3

and

T1T2 =
ρ

`1 `2 `3 `4

.

In the next example, we compute the operations of

extraction-contraction for A = {S1, S2} ∈ A(T ):

ρ

`1 `3`2

ρS1

`4

`5 `6 `7

ρS2

`8

=⇒ R↑AT =
ρS1

`4

`3

ρS2

`6 `7

, R↓AT =
ρ

ρS2
ρS1

`1 `2 `5 `8
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Labelled trees T and forests F

De�nition

Every T n
e ∈ T is described with a triple (T , e, n) where T is a

rooted tree endowed with

an edge-labelling e : ET → Nd

a node-labelling n : N̊T → Nd .

We denote by F the set of labelled forests and denote a triple

(F , e, n) by F n
e ∈ F.

De�nition

We write 〈T〉 for the linear span of T. We denote 〈F〉 as the free
vector space generated by F equipped with the product ·.
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Link with the symbols

Let T n
e ∈ T,

To u ∈ LT , we associate a "noise", Ξl(u).

To e ∈ ET , we associate an abstract integrator I l(e)
e(e)(·).

To u ∈ N̊T , we associate a monomial X n(u).

I1(Ξ)2 →
ρ

`2`1

XI(Ξ)Ξ→
ρ
X

`2`1

ρ

`1 `2 `3 `4
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Operations on the labels

The product in T is given by (T n
e , T̂

n̂
ê ) 7→ T̄ n̄

ē , T̄ := TT̂ where

the labels ē and n̄ are obtained by restriction except for the

root, n̄(ρT̄ ) := n(ρT ) + n̂(ρT̂ ).

The product in F is given by (F n
e , F̂

n̂
ê ) 7→ F̄ n̄

ē , where

F̄ := F · F̂ , and labels are obtained by restriction on F and F̂ .

The forest R↑AF n
e inherits edge- and node-labels from F n

e by

simple restriction.

The forest R↓AF n
e inherits the edge-labels from F n

e by simple

restriction, while the node-labels are the sums of the labels

over equivalence classes:

n([x ])
def
=

∑
y : y∼Ax

n(y).
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Computation with ∆̄

Let Ā ⊂ A, we de�ne an in�nite triangular linear map

∆̄ : 〈F〉 → 〈F〉 ⊗ 〈F〉 by

∆̄F n
e =

∑
A∈Ā(F )

∑
nA,eA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA

A, δ− :
ρ

`1 `3`2

ρA1

`4

`5 `6 `7

ρA2

`8

−→
ρA1

`4

`3

ρA2

`6 `7

⊗
ρ

ρA2
ρA1

`1 `2 `5 `8

A+, δ+ :
ρ

`1 `3`2

`4

`5 `6 `7 `8

−→
ρ

`3

`4

`6 `7

⊗
ρ

`8`5`1 `2
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Coassociativity

Theorem

If Ā satis�es certain properties then the identity

(id⊗ ∆̄)∆̄F n
e = (∆̄⊗ id)∆̄F n

e ,

holds for every F n
e ∈ F. Moreover ∆̄ is multiplicative, i.e. for all

F1,F2 ∈ F
∆̄(F1 · F2) = (∆̄F1) · (∆̄F2).

Finally ∆̄ : 〈T〉 → F⊗ 〈T〉, where 〈T〉 is the linear span of T.
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Homogeneity

For a labelled tree T n
e ∈ T, we de�ne its homogeneity by

|T n
e |s =

∑
u∈LTtET

|l(u)|s +
∑
x∈N̊T

|n(x)|s −
∑
e∈ET

|e(e)|s.

To a symbol τ we associate a real number |τ | called its

homogeneity: |Ξα|s = |α|s, |X |s = 1, |1|s = 0

|τ1...τn|s = |τ1|s + ...+ |τn|s, Iβk (τ) = |τ |s + |β|s − |k |s.
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Positive Renormalisation

De�nition

A rooted tree T ∈ T is said to be elementary if it either consists

only of the root or has only one edge incident to the root. Let T̂ be

the corresponding set of labelled trees.

De�nition

Let T0
+ ⊂ T̂ be the set of elementary labelled trees with positive

homogeneity and zero label at the root. Then T+ is the set of

labelled trees T n
e such that T n̂

e is a product of trees in T0
+ where

n̂(x) := n(x)1(x 6= ρT ) .
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Positive Renormalisation

Let Π+ : T→ T+ the multiplicative projection on trees with

positive homogeneity. We de�ne :

∆ : 〈T〉 → 〈T〉 ⊗ 〈T+〉, ∆ = (id⊗ Π+)δ+

∆+ : 〈T+〉 → 〈T+〉 ⊗ 〈T+〉, ∆+ = (Π+ ⊗ Π+)δ+.

Theorem

The algebra 〈T+〉 endowed with the product (τ, τ̄) 7→ τ τ̄ and the

coproduct ∆+ is a Hopf algebra. Moreover ∆ turns 〈T〉 into a right

comodule over 〈T+〉.
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Positive renormalisation Group : Structure Group

We de�ne H+ as 〈T+〉. If H∗+ denotes the dual of H+, then we set

G+ := {g ∈ H∗+ : g(τ1τ2) = g(τ1)g(τ2), ∀ τ1, τ2 ∈ H+}.

Theorem

Let R+ = {Γg : 〈T〉 → 〈T〉, Γg = (id⊗ g)∆, g ∈ G+}. Then R+

is a group for the composition law. Moreover, one has for

f , g ∈ G+:

Γf Γg = Γf ◦g , f ◦ g = (f ⊗ g)∆+.
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The KPZ equation and its generalisation

The KPZ equation is given for (t, x) ∈ R+ × R by :

∂tu = ∆u + (∂xu)2 + ξ

where ξ is a space-time white noise.

The generalized KPZ equation is given by :

∂tu = ∆u + f (u) (∂xu)2 + k(u) ∂xu + h(u) + g(u) ξ.

We obtain KPZ for f ≡ g ≡ 1 and k ≡ h ≡ 0.

Contains the solution of the stochastic heat equation and

invariant under composition with C∞(R)-functions.
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Generalised KPZ

We use the following coding: = Ξ, = I(Ξ)Ξ and = I1(Ξ)2.

Homogeneity Symbol(s)

−3

2
− κ

−1− 2κ ,

−1

2
− 3κ , , , , ,

−1

2
− κ ,

−4κ , , , , , , , ,

, , , , , , , , ,

, , , , ,

−2κ , , , , , , , ,

0 1
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Examples

For , the only rooted subtrees wich give positive branches are

{ , , , }

Γg = g( ) + g( ) + g( ) + g( ) + g(1) .

For , we consider the set { , , , , }

Γg = g( ) +
(
g( ) + g( )

)
+ g( ) + g( ) + g(1) .
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De�nition of the model (Πx , Γx ,y)

The map Π is multiplicative and given by
(Π1)(y) = 1, (ΠΞ)(y) = ξ(y), (ΠX )(y) = y ,

(ΠIkτ)(y) =

∫
DkK (y − z)(Πτ)(z)dz .

The map Πx is multiplicative and given by

(Πx1)(y) = 1, (ΠxΞ)(y) = ξ(y), (ΠxX )(y) = y − x ,

(ΠxIkτ)(y) =

∫
DkK (y − z)(Πxτ)(z)dz

−
|Ik(τ)|s∑
`=0

(y − x)`

`!

∫
Dk+`K (−z)(Πxτ)(z)dz .
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De�nition of the model (Πx , Γx ,y)

The map Πx is given by Πx = (Π⊗ fx)∆ = ΠΓfx where

fx(Jk(τ)) = −
∑

|`|s<d|Ik(τ)|se

(−x)`

`!

∫
Dk+`K (x − y)Πx(τ)(y)dy .

Then Γx ,y = (Γfx )−1Γfy = Γ(fx )−1◦fy = Γγx,y . In the case of smooth

functions, we have a pseudo-antipode description:

fx = (ΠA+·)(x)

where A+ : H+ → H is de�ned by

A+Jk(τ) = −
∑
m

(−X )m

m!
M(Ik+m ⊗A+)∆τ.
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Negative Renormalisation

De�nition

Let F− ⊂ F be the set of all labelled forests F n
e = ∅ or

F n
e = (T1 · T2 · · ·Tk)ne such that Ti /∈ T̂ and |(Ti )

n
e |s < 0 for all

i = 1, . . . , k . The set F− is stable under the product inherited from

F and therefore 〈F−〉 is an algebra.
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Negative Renormalisation

Let Π− : 〈F〉 7→ 〈F−〉 be the canonical projection onto 〈F−〉. Then
we de�ne the following maps

∆̂ : 〈F〉 → 〈F−〉 ⊗ 〈F〉, ∆̂ = (Π− ⊗ id)δ−

∆− : 〈F−〉 → 〈F−〉 ⊗ 〈F−〉, ∆− = (Π− ⊗ Π−)δ−.

Theorem

The algebra 〈F−〉 endowed with the product (φ, φ̄) 7→ φ · φ̄ and the

coproduct ∆− is a Hopf algebra. Moreover ∆̂ turns 〈F〉 into a left

comodule over 〈F−〉.
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Renormalisation Group

We de�ne H− as 〈F−〉. If H∗− denotes the dual of H−, then we set

G− := {` ∈ H∗− : `(φ1 · φ2) = `(φ1)`(φ2), ∀φ1, φ2 ∈ H−}.

Theorem

Let R− = {M` : 〈T〉 → 〈T〉, M` = (`⊗ id)∆̂, ` ∈ G−}. Then R−
is a group for the composition law. Moreover, one has for

f , g ∈ G− :

MfMg = Mf ◦g , f ◦ g = (g ⊗ f )∆−.
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Examples

For , the only subtrees which are non zero for ` in A(T ) are:

1, , and . Therefore, we obtain

M` = `(1) + ` ( ) + ` ( )

+ ` ( ) + ` ( ) + `( )

= + ` ( ) + ` ( ) + `( ).



33/47

Introduction Labelled Trees Hopf Algebras Extension of the structure

Recursivity

One can de�ne the map ` using a pseudo-antipode as for the

positive renormalisation. The map ` is given by:

` = E(ΠA−·)

where A− : F− → F is de�ned by

A−(T n
e ) = −

∑
A∈A(T )\{{T}}

∑
eA,nA

1

eA!

(
n

nA

)
A−

(
Π−R↑AT

nA+πeA
e

)
R↓AT

n−nA,nA+πeA
e+eA

.
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Link between the two renormalisations

On A = {S1, S2, S3} ∈ A(T ), we compute:

ρS3

`1

`5 `6

`3`2

ρS1

`4

`7 `8 `9

ρS2

`10

−→ R↑AT =
ρS1

`4

`3

ρS2

`8 `9

ρS3

`6`5

Finally, we obtain {S3} ∈ A+(T ) and {S1 , S2} ∈ A◦(T ). The set
A◦(T ) as to be understood as elements of A(T ) without rooted

subtree.
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A new map δ◦

With A◦(T ), we set with the usual notations the map

δ◦ : 〈T〉 7→ 〈F〉 ⊗ 〈T〉

δ◦F n
e :=

∑
A∈A◦(F )

∑
eA,nA

1

eA!

(
n

nA

)
R↑AF

nA+πeA
e ⊗R↓AF

n−nA
e+eA

,

Proposition

LetM : 〈F〉 ⊗ 〈F〉 7→ 〈F〉, φ⊗ φ̄ 7→ φ · φ̄. Then

(M⊗ id)(id⊗ δ◦)δ+ = δ−.
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Recursive Formula

For all ` ∈ G−, we have

M◦ = M◦` = (`Π− ⊗ id)δ◦, R = R` = (`Π− ⊗ id)δ+.

Proposition

The map R commutes with R+ and one has the following recursive

de�nition: 
M◦1 = 1, M◦X = X , M◦Ξ = Ξ

M◦τ τ̄ = (M◦τ) (M◦τ̄) , Mτ = M◦Rτ

M◦Ik(τ) = Ik(Mτ)

With this recursive de�nition, we are able to give an expression for

the renormalised model (ΠM
x , Γ

M
x ,y ).
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Classi�cations of the examples

We can classify the examples according to the following properties

satis�ed by the model:

1 Nice: for every symbol τ , ΠM
x τ = ΠxMτ . Examples: PAM in

R2 and the KPZ equation.

2 Medium-nice: For every symbol τ , (ΠM
x τ)(x) = (ΠxMτ)(x).

Examples: stochastic quantisation, the generalised KPZ.
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The reason of not having ΠM
x = ΠxM

We consider the labelled tree τ̄ = I(τ), there exist τi such that

MI(τ) = I(Mτ) = I(τ) +
∑

i I(τi ) with |τi |s > |τ |s. Then we

obtain

(ΠM
x I(τ))(y) =∫ K (y − z)−

∑
|`|s<d|I(τ)|se

(y − x)`

`!
K (−z)

 (ΠM
x τ)(z)dz .

The main di�erence between ΠM
x τ̄ and ΠxM τ̄ is that we can have

longer Taylor expansion because |τi |s > |τ |s. With

τ = I(I(I(Ξ)Ξ)Ξ), we obtain a counter-example to ΠM
x = ΠxM.
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A new label d

For that purpose, we use the same formalism as for T and we

de�ne Tex by:

1 We give the same meaning to the node-labels, the leaves and

the edge-labels as for T.

2 We add a new node-label d : N → R which computes a new

homogeneity.

For a shape T , we denote by T
n,d
e such labelled tree. The new

homogeneity is computed as |T |ex = |T |+
∑

u∈N d(u).
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Extended the extraction-contraction operations

Let A ∈ A(T ),

we extend R↑AT by performing the same computation and the

new node-labels is dA the restriction of d to A .

we do the same for R↓AT and for every A ∈ A, we replace
d(ρA) by |R↑AT |ex .

In the next example, we compute R↓AT for A = {S1, S2}.

ρ

`1 `3`2

ρS1

`4

`5 `6 `7

ρS2

`8

−→
ρ

|S2|ex|S1|ex

`1 `2 `5 `8

.
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The coproduct ∆̄

We extend the linear map ∆̄ : 〈F〉 → 〈F〉 ⊗ 〈F〉 by

∆̄F n,d
e =

∑
A∈Ā(F )

∑
nA,eA

1

eA!

(
n

nA

)
R↑AF

nA+πeA,d
e ⊗R↓AF

n−nA,d+nA+πeA
e+eA

Proposition

One has: (∆̄⊗ id)∆̄ = (id⊗ ∆̄)∆̄.
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Trees with negative labelled d

De�nition

We denote by Tn the set of labelled trees with d : NT → R−. We

do the same for Fn.

De�nition

We de�ne the positive labelled trees Tn
+ as the same as for T+ with

the new homogeneity | · |ex . We consider P+ the operator which

sets the root label of d to 0:

P+T
n,d
e = T n,d̄

e , d̄ = d − 1ρT d ,

and the operator P− which sets d to 0 :

P−T n,d
e = T n,0

e = T n
e .
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Coproduct

Let Π+ : 〈Fn〉 7→ 〈Tn
+〉, Π− : 〈F〉 7→ 〈F−〉 be the canonical

projection onto 〈Tn
+〉, resp. 〈F−〉. Then we de�ne the following

maps

∆ : 〈Tn〉 → 〈Tn〉 ⊗ 〈Tn
+〉, ∆ = (id⊗ Π+P+)δ+

∆+ : 〈Tn
+〉 → 〈Tn

+〉 ⊗ 〈Tn
+〉, ∆+ = (Π+P+ ⊗ Π+P+)δ+

∆̂ : 〈Fn〉 → 〈F−〉 ⊗ 〈Fn〉, ∆̂ = (Π−P− ⊗ id)δ−

∆− : 〈F−〉 → 〈F−〉 ⊗ 〈F−〉, ∆− = (Π−P− ⊗ Π−P−)δ−.
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Hopf Algebras

Theorem

The algebra 〈Tn
+〉 endowed with the product (τ, τ̄) 7→ τ τ̄ and the

coproduct ∆+ is a Hopf algebra. Moreover ∆ turns 〈Tn〉 into a

right comodule over 〈Tn
+〉.

Theorem

The algebra 〈F−〉 endowed with the product (φ, φ̄) 7→ φ · φ̄ and the

coproduct ∆− is a Hopf algebra. Moreover ∆̂ turns 〈Fn〉 into a left

comodule over 〈F−〉.

The group R− is unchanged whereas the group R+ takes into

account the new label d .
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Examples

For , the only subtrees which are non zero for ` in A(T ) are:

1, , and . Therefore, we obtain

M` = `(1) + ` ( ) + ` ( )

+ ` ( ) + ` ( ) + `( )

= + ` ( ) + ` ( ) + `( ).
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New property

Let ∆◦ de�ned by

∆◦ : 〈Tn〉 7→ 〈F−〉 ⊗ 〈Tn〉, ∆◦ = (Π−P− ⊗ id)δ◦.

Proposition

One has the following identities:

M(13)(2)(4) (∆◦ ⊗∆◦) ∆ = (id⊗∆)∆◦

M(13)(2)(4)(∆̂⊗∆◦)∆ = (id⊗∆)∆̂.

whereM(13)(2)(4) is de�ned by

M(13)(2)(4)(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 · τ3 ⊗ τ2 ⊗ τ4).
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Nice identity

Proposition

Let T n
e and ` ∈ G−, then ΠM`

x = ΠxM`, γ
M`
x ,y = γx ,yM

◦
` and

ΠM`
x T n

e =
∑
A∈A(T )

∑
eA,nA

1

eA!

(
n

nA

)
`
(

Π−R↑AT
nA+πeA
e

)
Πx

(
R↓AT

n−nA,nA+πeA
e+eA

)

ΠM`
x T n

e = (E(ΠA−·)⊗ Π⊗ (ΠA+·)(x)) (id⊗∆)∆̂T n
e .
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