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Motivation: modelling interface growth

Figure: Takeuchi, Sano, Sasamoto, Spohn (2011, Sci. Rep.)
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KPZ equation

Model for (fluctuations in) random interface growth: h : R+×R→ R,

∂th(t, x) = ∆h(t, x)︸ ︷︷ ︸
diffusion

+ λ|∂xh(t, x)|2︸ ︷︷ ︸
slope-dependence

+ ξ(t, x)︸ ︷︷ ︸
space-time white noise

Kardar-Parisi-Zhang (1986): slope-dependent growth F (∂xh);

F (∂xh) = F (0) + F ′(0)∂xh +
1

2
F ′′(0)(∂xh)2 + . . .

Highly non-rigorous since ∂xh is a distribution; come back to this
later.

Conjecture: fluctuations

ε1(h(tε−3, xε−2)− ϕ(t, x))

converge to KPZ fixed point. Only known for fixed t, special h0 (Amir

et al. (2011), Sasamoto-Spohn (2010), Borodin et al. (2014)). Difficulty: KPZ
fixed point is very poorly understood.
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KPZ universality conjecture

All interface models converge to KPZ fixed point under “renormalization”

f 7→ εf (·ε−3, ·ε−2).

Red line: KPZ equation
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Weak KPZ universality conjecture: physics

Gaussian fixed point and KPZ fixed point connected by one-dimensional
curve: ∂th = ∆h + λ|∂xh|2 + ξ.
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Weak KPZ universality conjecture: mathematics

Consider class of stochastic models (f ε) on [0,∞)×R or [0,∞)× Z with

exactly one conservation law;

tunable strength of asymmetry ε.

Then ∃ observable uε of f ε such that

ε−1(uε(tε−4, xε−2)− ϕ(t, x))⇒ u(t, x),

where u = ∂xh solves Burgers equation

∂tu = ∆u + ∂xu
2 + ∂xξ.

uε measures interface height differences at neighboring sites;

can go back and forth between h and u = ∂xh, but u mathematically
more convenient.
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Weak KPZ universality conjecture: examples
Simple exclusion process:

particles on Z move independently, jump left with rate p, right with
rate 1− p;

jump suppressed if landing site occupied;

conservation law: no. of particles;

p = 1
2 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ Burgers.

Ginzburg-Landau ∇ϕ model:

Interacting Brownian motions on Z:

dx j =
(
pV ′(r j+1)− (1− p)V ′(r j)

)
dt + dw j ; r j = x j − x j−1;

p = 1
2 : convergence to Gaussian; p = 1

2 + ε: expect ⇒ KPZ.

Hairer-Quastel model:

Replace quadratic nonlinearity in KPZ by general one, smooth noise:

∂tv = ∆v + αF (∂xv) + ρ ∗ ξ

α = 0: (convergence to) Gaussian; α = ε: expect ⇒ KPZ.
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Weak KPZ universality conjecture: metatheorem

Metatheorem (Gonçalves-Jara ’13, Gubinelli-Jara ’13, Gubinelli-P. ’15)

We have a set of tools allowing to verify the weak KPZ universality
conjecture for a large class of models starting from equilibrium.

Go-Ja ’13: Tools for tightness and martingale characterization of limits;

Gu-Ja ’13: refined martingale characterization;

Gu-Pe ’15: uniqueness of refined martingale characterization.

Tested on many models:

Generalizations of simple exclusion process: Gonçalves-Jara (2014),

Gonçalves-Jara-Simon (2016), Franco-Gonçalves-Simon (2016);

Zero-range process and many other interacting particle systems:
Gonçalves-Jara-Sethuraman (2015);

Ginzburg-Landau ∇ϕ model: Diehl-Gubinelli-P. (2016, unpublished);

Hairer-Quastel model: Gubinelli-P. (2016).
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How to solve KPZ

∂th = ∆h + |∂xh|2 −∞+ ξ.

Difficulty: h(t, ·) has Brownian regularity, so |∂xh|2 −∞ =?

Cole-Hopf transformation: Bertini-Giacomin (1997) set h := logw , where

∂tw = ∆w + wξ

(linear Itô SPDE). Correct object but no equation for h.

Hairer (2013): series expansion and rough paths/regularity structures,
defines |∂xh|2 −∞.

Martingale problem: Assing (2002), Gonçalves-Jara (2010/2014), Gubinelli-Jara

(2013) define “energy solutions” of equilibrium KPZ. Uniqueness long
open, solved in Gubinelli-P. (2015).
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Different solutions and weak universality

Difficulty with Cole-Hopf: most systems behave badly under
exp-transform, only ok for few specific models: Bertini-Giacomin (1997),

Dembo-Tsai (2013), Corwin-Tsai (2015), Corwin-Shen-Tsai (2016).

Difficulty with pathwise approach: need control of regularity,
universality so far only for semilinear S(P)DEs: Hairer-Quastel (2015),

Hairer-Shen (2015), Gubinelli-P. (2015).

Martingale problem: most powerful tool for universality if invariant
measure known explicitly (all the works mentioned above). Approach:
-Show tightness of fluctuations;
-Give martingale characterization of limit points;
-Uniqueness ⇒ convergence.
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Conclusion

KPZ universality conjecture:
asymmetric growth models ⇒ KPZ fixed point.

Weak KPZ universality conjecture:
weakly asymmetric growth models ⇒ KPZ equation.

Both difficult to show because conjectured limits are difficult objects.

But with recent breakthroughs on KPZ equation: weak conjecture
becomes tractable.

In particular with martingale approach: good handle on equilibrium
situation, can establish conjecture in that case.
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Thank you
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